材料科学
放电等离子烧结
奥氏体
合金
介电谱
透射电子显微镜
冶金
奥氏体不锈钢
电化学
扫描电子显微镜
烧结
粒度
分析化学(期刊)
微观结构
复合材料
腐蚀
纳米技术
电极
化学
物理化学
色谱法
作者
Junaid Ahmed,Ihsan‐ul‐Haq Toor,M.A. Hussein,N. Al‐Aqeeli,Mirza Murtuza Ali Baig
出处
期刊:Nanomaterials
[MDPI AG]
日期:2022-04-05
卷期号:12 (7): 1225-1225
被引量:3
摘要
Nanostructured ferritic (Fe(82−x)-Cr18-Six, x = 0–3 wt %) and austenitic (Fe(73−x)-Cr18-Ni9-Six, x = 0–3 wt %) stainless steel (SS) alloys were developed by mechanical alloying (MA) and spark plasma sintering (SPS). The unit cell parameter estimated from X-ray diffraction spectra exhibited a decreasing trend with an increase in wt % of Si content in both alloy systems. The particle size of powders estimated using bright field transmission electron microscopy images for ferritic (3 wt % Si) and austenitic (3 wt % Si) SS powders was found to be 65 ± 5 nm and 18 ± 3 nm, respectively. In case of the ferritic system, 3 wt % Si exhibited the highest densification (~98%) and micro-hardness of about 350.6 ± 11.2 HV, respectively. Similarly, for the austenitic system (3 wt % Si), maximum densification and micro-hardness values were about 99% and 476.6 ± 15.2 HV, respectively. Comparative analysis of potentiodynamic polarization, linear polarization, and electrochemical impedance spectroscopy results indicates an increase in electrochemical performance of both alloy systems as the wt % Si was increased. The increase in electrochemical performance is directly related to the increase in densification owing to Si addition in these alloys.
科研通智能强力驱动
Strongly Powered by AbleSci AI