Methodology for Shape Optimization of Magnetic Designs: Magnetic Spring Characteristic Tailored to Application Needs

扭矩 转矩脉动 磁铁 模块化设计 拓扑优化 机械工程 计算机科学 工程类 控制理论(社会学) 控制工程 数学优化 直接转矩控制 数学 有限元法 电气工程 物理 结构工程 控制(管理) 电压 人工智能 感应电动机 热力学 操作系统
作者
Branimir Mrak,Bianca Wex,Hubert Mitterhofer
出处
期刊:Actuators [Multidisciplinary Digital Publishing Institute]
卷期号:11 (2): 37-37 被引量:2
标识
DOI:10.3390/act11020037
摘要

Topology and shape optimization are still rarely applied to problems in electromagnetic design due to the computational complexity and limited commercial tooling, even though components such as electrical motors, magnetic springs or magnetic bearings could benefit from it, either to improve performance (reducing torque ripple and losses through shaping harmonic content in back electromotive force) or reduce the use of rare-earth materials. Magnetic springs are a fatigue free alternative to mechanical springs, where shape optimization can be exploited to a great degree—allowing for advanced non-linear stiffness characteristic shaping. We present the optimization methodology relying on a combination of several approaches for characteristic shaping of magnetic springs through either a modular design approach based on: (i) Fourier order decomposition; (ii) breaking conventional design symmetry; or (iii) free shaping of magnets through deviation from a nominal design using problem formulations such as spline and polynomials for material boundary definitions. Each of the parametrizations is formulated into a multi-objective optimization problem with both performance and material cost, and solved using gradient free optimization techniques (direct search, genetic algorithm). The methodology is employed on several benchmark problems—both academic and application inspired magnetic spring torque characteristic requirements. The resulting designs fit well with the requirements, with a relatively low computational cost. As such, the methodology presented is a promising candidate for other design problems in 2D shape optimization in electrical motor research and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低代萱完成签到,获得积分10
刚刚
刚刚
紫薯球发布了新的文献求助10
刚刚
南烟完成签到,获得积分10
1秒前
1秒前
wangjunhao完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
车祥完成签到,获得积分10
3秒前
ff666发布了新的文献求助10
3秒前
清脆香露完成签到 ,获得积分10
4秒前
五毛发布了新的文献求助10
4秒前
Sjj发布了新的文献求助10
5秒前
香蕉觅云应助Grinder采纳,获得10
5秒前
悲伤小蝴蝶完成签到,获得积分10
5秒前
6秒前
激情的自行车完成签到,获得积分10
6秒前
机灵鹌鹑发布了新的文献求助10
7秒前
7秒前
Atlantis发布了新的文献求助10
7秒前
垚祎发布了新的文献求助10
7秒前
皮不起来的国国完成签到,获得积分10
8秒前
wanna发布了新的文献求助10
8秒前
天天快乐应助文献狂人采纳,获得10
9秒前
眼睛大雨筠应助fishway采纳,获得30
9秒前
fofo完成签到,获得积分10
10秒前
10秒前
10秒前
李扬完成签到,获得积分10
10秒前
万能图书馆应助DearHermione采纳,获得20
11秒前
11秒前
11秒前
故意的如冬完成签到,获得积分10
11秒前
NexusExplorer应助无宇伦比采纳,获得10
12秒前
ding应助Mcling采纳,获得10
13秒前
sanner发布了新的文献求助10
13秒前
OK不服气完成签到,获得积分10
13秒前
13秒前
狐桃桃完成签到,获得积分10
13秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
Key Questions in Second Language Acquisition 500
2023 ASHRAE Handbook HVAC Applications (SI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3873370
求助须知:如何正确求助?哪些是违规求助? 3415654
关于积分的说明 10695295
捐赠科研通 3139870
什么是DOI,文献DOI怎么找? 1732415
邀请新用户注册赠送积分活动 835401
科研通“疑难数据库(出版商)”最低求助积分说明 781967