The Biological Meaning of Radiomic Features

无线电技术 医学 人工智能 人气 特征(语言学) 领域(数学) 意义(存在) 机器学习 数据科学 计算机科学 放射科 心理学 心理治疗师 哲学 社会心理学 语言学 数学 纯数学
作者
Michal R. Tomaszewski,Robert J. Gillies
出处
期刊:Radiology [Radiological Society of North America]
卷期号:298 (3): 505-516 被引量:445
标识
DOI:10.1148/radiol.2021202553
摘要

Radiomic analysis offers a powerful tool for the extraction of clinically relevant information from radiologic imaging. Radiomics can be used to predict patient outcome through automated high-throughput feature extraction, using large training cohorts to elucidate subtle relationships between image characteristics and disease status. However powerful, the data-driven nature of radiomics inherently offers no insight into the biological underpinnings of the observed relationships. Early radiomics work was dominated by analysis of semantic, radiologist-defined features and carried qualitative real-world meaning. Following the rapid developments and popularity of machine learning approaches, the field moved quickly toward high-throughput agnostic analyses, resulting in increasingly large feature sets. This trend took the focus toward an increase in predictive power and further away from a biological understanding of the findings. Such a disconnect between predictor model and biological meaning will inherently limit broad clinical translation. Efforts to reintroduce biological meaning into radiomics are gaining traction in the field with distinct emerging approaches available, including genomic correlates, local microscopic pathologic image textures, and macroscopic histopathologic marker expression. These methods are presented in this review, and their significance is discussed. The authors predict that following the increasing pressure for robust radiomics, biological validation will become a standard practice in the field, thus further cementing the role of the method in clinical decision making. © RSNA, 2021 An earlier incorrect version appeared online. This article was corrected on February 10, 2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cdercder应助夫子1987采纳,获得10
1秒前
cdercder应助夫子1987采纳,获得10
1秒前
jiahe发布了新的文献求助30
1秒前
cdercder应助夫子1987采纳,获得10
1秒前
cdercder应助夫子1987采纳,获得10
1秒前
1秒前
大力高山完成签到,获得积分10
1秒前
liumenghan发布了新的文献求助10
2秒前
ho应助自由南珍采纳,获得10
2秒前
2秒前
Silvia完成签到,获得积分10
2秒前
尊敬梦旋完成签到,获得积分10
2秒前
3秒前
张XX完成签到,获得积分10
3秒前
darling完成签到,获得积分10
3秒前
3秒前
领导范儿应助123采纳,获得10
4秒前
4秒前
斯文败类应助LIN采纳,获得10
4秒前
WN发布了新的文献求助10
4秒前
88完成签到,获得积分10
5秒前
小秦驳回了斧王应助
5秒前
天天快乐应助mk_smile采纳,获得10
5秒前
小新应助七分饱采纳,获得10
6秒前
才能回答不出完成签到,获得积分10
6秒前
星辰大海应助标致逍遥采纳,获得10
6秒前
7秒前
徐啊徐发布了新的文献求助10
7秒前
Betaremains完成签到,获得积分10
7秒前
7秒前
于玕发布了新的文献求助10
7秒前
小仙女发布了新的文献求助10
7秒前
7秒前
悠悠完成签到,获得积分10
7秒前
kiki完成签到,获得积分10
8秒前
8秒前
龙泉发布了新的文献求助10
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402945
求助须知:如何正确求助?哪些是违规求助? 4521448
关于积分的说明 14085598
捐赠科研通 4435393
什么是DOI,文献DOI怎么找? 2434675
邀请新用户注册赠送积分活动 1426840
关于科研通互助平台的介绍 1405544