数学
多线性映射
不相交集
张量(固有定义)
多线性代数
期限(时间)
域代数上的
多项式的
基质(化学分析)
秩(图论)
一般化
张量积
纯数学
离散数学
组合数学
数学分析
代数表示
乔丹代数
物理
复合材料
量子力学
材料科学
作者
Jeroen Vanderstukken,Patrick Kürschner,Ignat Domanov,Lieven De Lathauwer
摘要
In Part I we proposed a multilinear algebra framework to solve 0-dimensional systems of polynomial equations with simple roots. We extend this framework to incorporate multiple roots: a block term decomposition (BTD) of the null space of the Macaulay matrix reveals the dual (sub)space of a disjoint root in each term. The BTD is the joint triangularization of multiplication tables and a three-way generalization of the Jordan canonical form in the matrix case, intimately related to the border rank of a tensor. We hint at and illustrate flexible numerical optimization-based algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI