各向同性
模数
材料科学
多孔性
财产(哲学)
弹性模量
多孔介质
复合材料
电导率
关系(数据库)
经典力学
数学分析
机械
数学
物理
计算机科学
光学
认识论
数据库
哲学
量子力学
出处
期刊:Ceramics-silikaty
[University of Chemistry and Technology]
日期:2016-11-29
卷期号:: 74-80
被引量:24
标识
DOI:10.13168/cs.2016.0063
摘要
A new generalized cross-property relation is proposed for predicting the relative elastic moduli (Young's modulus, shear modulus, bulk modulus) from the relative conductivities (thermal or electrical) of isotropic porous materials with spheroidal pores. Using this cross-property-relation it is possible to estimate the elastic moduli when the conductivites are known (either from real-world measurements or from numerical calculations on digital microstructures) and vice versa. This generalized cross-property relation contains the case of spherical or isometric pores as a special case, but is sufficiently general to account for the properties of materials with strongly anisometric pores, i.e. randomly orientated prolate and oblate pores, including the extreme cases of pore channels or microcracks. The exponent of this cross-property relation is shown in graphical form and - for future reference with respect to practical applications - its numerical values are listed in tabular form as a function of the pore aspect ratio and the Poisson ratio of the solid
科研通智能强力驱动
Strongly Powered by AbleSci AI