A metabolomic approach to lung cancer

肺癌 医学 代谢组学 腺癌 阶段(地层学) 癌症 病理 代谢物 内科学 肿瘤科 生物信息学 生物 古生物学
作者
Suya Hori,Shin Nishiumi,Kazuyuki Kobayashi,Masakazu Shinohara,Yukihisa Hatakeyama,Yoshikazu Kotani,Naoya Hatano,Yoshimasa Maniwa,Wataru Nishio,Takeshi Bamba,Eiichiro Fukusaki,Takeshi Azuma,Tadaomi Takenawa,Yoshihiro Nishimura,Masaru Yoshida
出处
期刊:Lung Cancer [Elsevier BV]
卷期号:74 (2): 284-292 被引量:185
标识
DOI:10.1016/j.lungcan.2011.02.008
摘要

Lung cancer is one of the most common cancers in the world, but no good clinical markers that can be used to diagnose the disease at an early stage and predict its prognosis have been found. Therefore, the discovery of novel clinical markers is required. In this study, metabolomic analysis of lung cancer patients was performed using gas chromatography mass spectrometry. Serum samples from 29 healthy volunteers and 33 lung cancer patients with adenocarcinoma (n=12), squamous cell carcinoma (n=11), or small cell carcinoma (n=10) ranging from stage I to stage IV disease and lung tissue samples from 7 lung cancer patients including the tumor tissue and its surrounding normal tissue were used. A total of 58 metabolites (57 individual metabolites) were detected in serum, and 71 metabolites were detected in the lung tissue. The levels of 23 of the 58 serum metabolites were significantly changed in all lung cancer patients compared with healthy volunteers, and the levels of 48 of the 71 metabolites were significantly changed in the tumor tissue compared with the non-tumor tissue. Partial least squares discriminant analysis, which is a form of multiple classification analysis, was performed using the serum sample data, and metabolites that had characteristic alterations in each histological subtype and disease stage were determined. Our results demonstrate that changes in metabolite pattern are useful for assessing the clinical characteristics of lung cancer. Our results will hopefully lead to the establishment of novel diagnostic tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一澜发布了新的文献求助10
1秒前
1秒前
2秒前
烟花应助芋泥夹心采纳,获得10
3秒前
111发布了新的文献求助10
5秒前
熊巴巴发布了新的文献求助20
7秒前
丰富飞阳发布了新的文献求助10
8秒前
栗子完成签到 ,获得积分10
10秒前
111完成签到,获得积分20
12秒前
CipherSage应助舒服的踏歌采纳,获得10
13秒前
英俊的铭应助HopeStar采纳,获得10
15秒前
乐乐应助阿匡采纳,获得10
15秒前
所所应助霜霜采纳,获得10
16秒前
脑洞疼应助打死小胖纸采纳,获得30
19秒前
小蘑菇应助岩岫清风采纳,获得10
20秒前
20秒前
22秒前
躺赢完成签到 ,获得积分10
22秒前
Rain完成签到,获得积分10
23秒前
25秒前
Nniu完成签到,获得积分10
26秒前
26秒前
科研通AI5应助一澜采纳,获得10
26秒前
坚强的小蘑菇完成签到 ,获得积分10
27秒前
HopeStar发布了新的文献求助10
27秒前
ding应助Rain采纳,获得30
29秒前
可爱牛排发布了新的文献求助50
30秒前
JamesPei应助zhk采纳,获得10
30秒前
小李子完成签到 ,获得积分10
31秒前
34秒前
科目三应助清脆水卉采纳,获得10
35秒前
36秒前
37秒前
hdy331完成签到,获得积分10
38秒前
科研小白发布了新的文献求助10
40秒前
楚楚楚完成签到,获得积分10
40秒前
40秒前
41秒前
舒服的踏歌完成签到,获得积分10
41秒前
41秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794562
求助须知:如何正确求助?哪些是违规求助? 3339387
关于积分的说明 10295828
捐赠科研通 3056074
什么是DOI,文献DOI怎么找? 1676881
邀请新用户注册赠送积分活动 804920
科研通“疑难数据库(出版商)”最低求助积分说明 762191