双稳态
行波
反应扩散系统
物理
扩散
非线性系统
理论(学习稳定性)
经典力学
稳态(化学)
数学分析
数学
热力学
量子力学
计算机科学
化学
物理化学
机器学习
作者
Matthieu Alfaro,Jérôme Coville,Gaël Raoul
标识
DOI:10.3934/dcds.2014.34.1775
摘要
We are concerned with travelling wave solutionsarising in a reaction diffusion equation with bistable andnonlocal nonlinearity, for which the comparison principle does nothold. Stability of the equilibrium $u\equiv 1$ is not assumed. Weconstruct a travelling wave solution connecting 0 to an unknownsteady state, which is 'above and away', from theintermediate equilibrium. For focusing kernels we prove that, asexpected, the wave connects 0 to 1. Our results also apply readilyto the nonlocal ignition case.
科研通智能强力驱动
Strongly Powered by AbleSci AI