Dynamic Graph Neural Networks for Sequential Recommendation

计算机科学 图形 理论计算机科学 推荐系统 人工智能 机器学习 数据挖掘
作者
Mengqi Zhang,Shu Wu,Xueli Yu,Qiang Liu,Liang Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:124
标识
DOI:10.1109/tkde.2022.3151618
摘要

Modeling user preference from his historical sequences is one of the core problems of sequential recommendation. Existing methods in this field are widely distributed from conventional methods to deep learning methods. However, most of them only model users' interests within their own sequences and ignore the dynamic collaborative signals among different user sequences, making it insufficient to explore users' preferences. We take inspiration from dynamic graph neural networks to cope with this challenge, modeling the user sequence and dynamic collaborative signals into one framework. We propose a new method named Dynamic Graph Neural Network for Sequential Recommendation (DGSR), which connects different user sequences through a dynamic graph structure, exploring the interactive behavior of users and items with time and order information. Furthermore, we design a Dynamic Graph Recommendation Network to extract user's preferences from the dynamic graph. Consequently, the next-item prediction task in sequential recommendation is converted into a link prediction between the user node and the item node in a dynamic graph. Extensive experiments on four public benchmarks show that DGSR outperforms several state-of-the-art methods. Further studies demonstrate the rationality and effectiveness of modeling user sequences through a dynamic graph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho应助lvbowen采纳,获得10
1秒前
十三发布了新的文献求助10
1秒前
lt发布了新的文献求助10
2秒前
Owen应助精明松思采纳,获得10
4秒前
彩云追月完成签到 ,获得积分10
11秒前
田様应助cat采纳,获得10
12秒前
13秒前
小马甲应助钱来采纳,获得10
14秒前
15秒前
孙燕应助Hamakanma采纳,获得30
15秒前
May应助梦醉采纳,获得20
16秒前
17秒前
李健应助Jessica采纳,获得10
17秒前
经从梦完成签到,获得积分10
18秒前
Hello应助马路采纳,获得10
20秒前
21秒前
华侪发布了新的文献求助10
21秒前
Aom完成签到,获得积分10
23秒前
24秒前
烟花应助estrale采纳,获得30
25秒前
HapenLiao发布了新的文献求助10
26秒前
传奇3应助AI_S采纳,获得10
26秒前
龙珠的妈完成签到,获得积分10
27秒前
小冉完成签到,获得积分10
27秒前
28秒前
28秒前
乐乐应助zzy1020采纳,获得10
30秒前
30秒前
31秒前
小冉发布了新的文献求助10
31秒前
古德赖可完成签到,获得积分10
33秒前
传奇3应助华侪采纳,获得10
34秒前
37秒前
自然诺言完成签到,获得积分10
37秒前
lm完成签到,获得积分10
37秒前
十三完成签到,获得积分10
38秒前
cala应助dddd采纳,获得10
43秒前
zzy1020发布了新的文献求助10
43秒前
古德赖可发布了新的文献求助10
43秒前
传奇3应助快乐小兰采纳,获得10
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3933536
求助须知:如何正确求助?哪些是违规求助? 3478538
关于积分的说明 11002406
捐赠科研通 3208699
什么是DOI,文献DOI怎么找? 1773199
邀请新用户注册赠送积分活动 860244
科研通“疑难数据库(出版商)”最低求助积分说明 797582