Complementary, Heterogeneous and Adversarial Networks for Image-to-Image Translation

鉴别器 计算机科学 人工智能 图像翻译 发电机(电路理论) 光学(聚焦) 翻译(生物学) 残余物 图像融合 图像(数学) 模式识别(心理学) 算法 功率(物理) 物理 光学 信使核糖核酸 基因 化学 探测器 量子力学 生物化学 电信
作者
Fei Gao,Xingxin Xu,Jun Yu,Meimei Shang,Xiang Li,Dacheng Tao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 3487-3498 被引量:22
标识
DOI:10.1109/tip.2021.3061286
摘要

Image-to-image translation is to transfer images from a source domain to a target domain. Conditional Generative Adversarial Networks (GANs) have enabled a variety of applications. Initial GANs typically conclude one single generator for generating a target image. Recently, using multiple generators has shown promising results in various tasks. However, generators in these works are typically of homogeneous architectures. In this paper, we argue that heterogeneous generators are complementary to each other and will benefit the generation of images. By heterogeneous, we mean that generators are of different architectures, focus on diverse positions, and perform over multiple scales. To this end, we build two generators by using a deep U-Net and a shallow residual network, respectively. The former concludes a series of down-sampling and up-sampling layers, which typically have large perception field and great spatial locality. In contrast, the residual network has small perceptual fields and works well in characterizing details, especially textures and local patterns. Afterwards, we use a gated fusion network to combine these two generators for producing a final output. The gated fusion unit automatically induces heterogeneous generators to focus on different positions and complement each other. Finally, we propose a novel approach to integrate multi-level and multi-scale features in the discriminator. This multi-layer integration discriminator encourages generators to produce realistic details from coarse to fine scales. We quantitatively and qualitatively evaluate our model on various benchmark datasets. Experimental results demonstrate that our method significantly improves the quality of transferred images, across a variety of image-to-image translation tasks. We have made our code and results publicly available: http://aiart.live/chan/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易易完成签到,获得积分10
刚刚
刚刚
Tree发布了新的文献求助10
1秒前
领导范儿应助ZY采纳,获得10
2秒前
短耳树完成签到,获得积分10
2秒前
打打应助单身的青柏采纳,获得10
2秒前
shihui发布了新的文献求助10
2秒前
3秒前
3秒前
剁椒鱼头发布了新的文献求助10
4秒前
4秒前
张白发布了新的文献求助10
5秒前
斯文败类应助fhl采纳,获得10
5秒前
完美星落完成签到,获得积分10
6秒前
7秒前
铀氪锂锂完成签到,获得积分20
8秒前
Olivia发布了新的文献求助10
8秒前
9秒前
上官若男应助DAMAOMI采纳,获得10
9秒前
aeyang发布了新的文献求助10
9秒前
霜序完成签到,获得积分10
10秒前
小马甲应助qiuqiu采纳,获得30
11秒前
李爱国应助张白采纳,获得10
11秒前
清脆雪糕发布了新的文献求助10
12秒前
13秒前
13秒前
16秒前
学勾巴发布了新的文献求助10
18秒前
one完成签到 ,获得积分10
19秒前
清脆雪糕完成签到,获得积分10
19秒前
19秒前
王浩亿发布了新的文献求助10
21秒前
22秒前
huhubei完成签到,获得积分20
22秒前
瓶子发布了新的文献求助20
23秒前
华仔应助罗氏集团采纳,获得10
24秒前
领导范儿应助无心的紫山采纳,获得10
24秒前
huhubei发布了新的文献求助10
27秒前
忐忑的黄豆完成签到,获得积分10
27秒前
共享精神应助小小时光采纳,获得10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798057
求助须知:如何正确求助?哪些是违规求助? 3343495
关于积分的说明 10316482
捐赠科研通 3060204
什么是DOI,文献DOI怎么找? 1679400
邀请新用户注册赠送积分活动 806560
科研通“疑难数据库(出版商)”最低求助积分说明 763221