Updating an Empirically Based Tool for Analyzing Congenital Heart Surgery Mortality

医学 死亡率 诊断代码 统计 外科 人口 数学 环境卫生
作者
Marshall L. Jacobs,Jeffrey P. Jacobs,Dylan Thibault,Kevin D. Hill,Brett R. Anderson,Pirooz Eghtesady,Tara Karamlou,S. Ram Kumar,John E. Mayer,Carlos M. Mery,Meena Nathan,David M. Overman,Sara K. Pasquali,James D. St. Louis,David M. Shahian,Sean M. O’Brien
出处
期刊:World Journal for Pediatric and Congenital Heart Surgery [SAGE Publishing]
卷期号:12 (2): 246-281 被引量:83
标识
DOI:10.1177/2150135121991528
摘要

Objectives: STAT Mortality Categories (developed 2009) stratify congenital heart surgery procedures into groups of increasing mortality risk to characterize case mix of congenital heart surgery providers. This update of the STAT Mortality Score and Categories is empirically based for all procedures and reflects contemporary outcomes. Methods: Cardiovascular surgical operations in the Society of Thoracic Surgeons Congenital Heart Surgery Database (January 1, 2010 – June 30, 2017) were analyzed. In this STAT 2020 Update of the STAT Mortality Score and Categories, the risk associated with a specific combination of procedures was estimated under the assumption that risk is determined by the highest risk individual component procedure. Operations composed of multiple component procedures were eligible for unique STAT Scores when the statistically estimated mortality risk differed from that of the highest risk component procedure. Bayesian modeling accounted for small denominators. Risk estimates were rescaled to STAT 2020 Scores between 0.1 and 5.0. STAT 2020 Category assignment was designed to minimize within-category variation and maximize between-category variation. Results: Among 161,351 operations at 110 centers (19,090 distinct procedure combinations), 235 types of single or multiple component operations received unique STAT 2020 Scores. Assignment to Categories resulted in the following distribution: STAT 2020 Category 1 includes 59 procedure codes with model-based estimated mortality 0.2% to 1.3%; Category 2 includes 73 procedure codes with mortality estimates 1.4% to 2.9%; Category 3 includes 46 procedure codes with mortality estimates 3.0% to 6.8%; Category 4 includes 37 procedure codes with mortality estimates 6.9% to 13.0%; and Category 5 includes 17 procedure codes with mortality estimates 13.5% to 38.7%. The number of procedure codes with empirically derived Scores has grown by 58% (235 in STAT 2020 vs 148 in STAT 2009). Of the 148 procedure codes with empirically derived Scores in 2009, approximately one-half have changed STAT Category relative to 2009 metrics. The New STAT 2020 Scores and Categories demonstrated good discrimination for predicting mortality in an independent validation sample (July 1, 2017-June 30, 2019; sample size 46,933 operations at 108 centers) with C-statistic = 0.791 for STAT 2020 Score and 0.779 for STAT 2020 Category. Conclusions: The updated STAT metrics reflect contemporary practice and outcomes. New empirically based STAT 2020 Scores and Category designations are assigned to a larger set of procedure codes, while accounting for risk associated with multiple component operations. Updating STAT metrics based on contemporary outcomes facilitates accurate assessment of case mix.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助小凯采纳,获得10
刚刚
gky完成签到,获得积分10
1秒前
子云发布了新的文献求助10
2秒前
zhanghenhao发布了新的文献求助10
3秒前
OCDer应助小巧蛋挞采纳,获得50
3秒前
菲_发布了新的文献求助10
4秒前
4秒前
5秒前
情怀应助wwwssswwwsss采纳,获得20
5秒前
H0neYvia发布了新的文献求助10
7秒前
Jaho完成签到,获得积分10
8秒前
8秒前
慕青应助浪费采纳,获得10
10秒前
11秒前
桐桐应助活力山晴采纳,获得10
11秒前
四月是你的谎言完成签到 ,获得积分10
12秒前
小巧蛋挞完成签到,获得积分20
13秒前
球球你了发布了新的文献求助30
14秒前
drunk发布了新的文献求助10
16秒前
18秒前
18秒前
半凡完成签到,获得积分10
19秒前
Valentina完成签到,获得积分10
21秒前
21秒前
vera发布了新的文献求助10
22秒前
大模型应助venture采纳,获得10
23秒前
24秒前
25秒前
浪费发布了新的文献求助10
25秒前
bkagyin应助菲_采纳,获得10
25秒前
无花果应助嘎嘎嘎采纳,获得10
26秒前
天衍四九完成签到,获得积分10
27秒前
整齐冰凡完成签到 ,获得积分10
28秒前
理论家发布了新的文献求助10
29秒前
hello发布了新的文献求助30
29秒前
29秒前
科研通AI5应助悲伤汉堡包采纳,获得10
30秒前
隐形曼青应助科研通管家采纳,获得10
31秒前
冰魂应助Erislastem采纳,获得10
31秒前
传奇3应助科研通管家采纳,获得10
31秒前
高分求助中
Behavior Analysis for Effective Teaching 500
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Gothic forms of feminine fictions 200
Solving Nonlinear Equations with Newton's Method 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836418
求助须知:如何正确求助?哪些是违规求助? 3378735
关于积分的说明 10505749
捐赠科研通 3098348
什么是DOI,文献DOI怎么找? 1706447
邀请新用户注册赠送积分活动 821062
科研通“疑难数据库(出版商)”最低求助积分说明 772431