纳米颗粒
药理学
线粒体
组合化学
纳米技术
化学
材料科学
癌症研究
医学
生物化学
作者
Jiahe Bao,Yinan Zhao,Jing Xu,Yuanqiang Guo
摘要
An integration combination of phototherapy and chemotherapy to treat carcinoma, solving the inner limitation of individual-modal chemical agent-based therapy or phototherapy, emerges to be a strategy with high prospects for achieving synergistic curative effects. The dye IR780-iodide (IR780) close to infrared radiation is a phototherapy agent with high prospects. However, it is limited in its clinical applications due to poor solubility in water. While epigallocatechin-3-gallate (EGCG), naturally resourced green tea polyphenol, has been extensively proven with intrinsic antitumor activity, but it is largely restricted by its low bioavailability in vivo. Hence, novel multiple-function nanoparticles comprising hyaluronic acid (HA) and IR780 were proposed to deliver EGCG, defined as EGCG@THSI nano-scale particles (EGCG@THSI NPs), thereby rapidly solving limitations of EGCG and IR780. Amphiphilic nano-scale carrier was prepared by triphenylphosphine (TPP), hyaluronic acid (HA), cystamine, and IR780, termed as TPP-HA-SS-IR780, and EGCG was loaded into the amphiphilic copolymer by self-assembly. TPP-HA-SS-IR780 endowed the as-synthesized EGCG@THSI NPs with excellent TPP-mediated mitochondrial-targeted and glutathione-triggered rapid drug release properties. As impacted by the integration of phototherapy and chemotherapy, the EGCG@THSI NPs under NIR laser irradiation showed a prominent anti-tumor effect. Taken together, this study presented a multiple-function nano-scale carrier platform with high prospects in improving the therapeutic efficacy of anti-carcinoma drugs.
科研通智能强力驱动
Strongly Powered by AbleSci AI