Which estimation method to choose in network psychometrics? Deriving guidelines for applied researchers.

范畴变量 计算机科学 样品(材料) 数据挖掘 心理信息 领域(数学) 样本量测定 数据科学 高斯分布 估计 统计 机器学习 数学 梅德林 物理 经济 色谱法 化学 管理 政治学 法学 纯数学 量子力学
作者
Adela‐Maria Isvoranu,Sacha Epskamp
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:28 (4): 925-946 被引量:246
标识
DOI:10.1037/met0000439
摘要

The Gaussian graphical model (GGM) has recently grown popular in psychological research, with a large body of estimation methods being proposed and discussed across various fields of study, and several algorithms being identified and recommend as applicable to psychological data sets. Such high-dimensional model estimation, however, is not trivial, and algorithms tend to perform differently in different settings. In addition, psychological research poses unique challenges, including placing a strong focus on weak edges (e.g., bridge edges), handling data measured on ordered scales, and relatively limited sample sizes. As a result, there is currently no consensus regarding which estimation procedure performs best in which setting. In this large-scale simulation study, we aimed to overcome this gap in the literature by comparing the performance of several estimation algorithms suitable for Gaussian and skewed ordered categorical data across a multitude of settings, as to arrive at concrete guidelines from applied researchers. In total, we investigated 60 different metrics across 564,000 simulated data sets. We summarized our findings through a platform that allows for manually exploring simulation results. Overall, we found that an exchange between discovery (e.g., sensitivity, edge weight correlation) and caution (e.g., specificity, precision) should always be expected, and achieving both-which is a requirement for perfect replicability-is difficult. Further, we identified that the estimation method is best chosen in light of each research question and have highlighted, alongside desirable asymptotic properties and low sample size discovery, results according to most common research questions in the field. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率灵槐发布了新的文献求助30
刚刚
鸟鸣完成签到,获得积分10
1秒前
1秒前
浮游应助刘晓倩采纳,获得10
1秒前
好嘞完成签到,获得积分10
2秒前
lz关闭了lz文献求助
2秒前
脑洞疼应助哈哈采纳,获得10
2秒前
3秒前
4秒前
4秒前
无私香彤完成签到 ,获得积分10
5秒前
漆漆完成签到 ,获得积分10
5秒前
6秒前
6秒前
噗通发布了新的文献求助10
6秒前
lll发布了新的文献求助10
6秒前
7秒前
7秒前
LLLL发布了新的文献求助10
8秒前
傅宛白发布了新的文献求助10
8秒前
wang丹完成签到 ,获得积分10
8秒前
明天见完成签到,获得积分10
8秒前
酷波er应助Jerry采纳,获得10
9秒前
10秒前
515发布了新的文献求助10
11秒前
Yuliu发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
菜菜完成签到 ,获得积分10
12秒前
武宗文完成签到,获得积分10
12秒前
SUNny完成签到 ,获得积分10
12秒前
ttt完成签到,获得积分10
13秒前
科研小虫发布了新的文献求助10
13秒前
13秒前
欢hi丢厚完成签到,获得积分10
15秒前
15秒前
bkagyin应助重要的迎彤采纳,获得10
15秒前
16秒前
17秒前
Jasper应助刻苦的白猫采纳,获得10
17秒前
Yuliu完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474408
求助须知:如何正确求助?哪些是违规求助? 4576176
关于积分的说明 14357024
捐赠科研通 4504098
什么是DOI,文献DOI怎么找? 2467989
邀请新用户注册赠送积分活动 1455721
关于科研通互助平台的介绍 1429693