Hierarchical nanostructure with ultrafine MoO3 particles-decorated Co(OH)2 nanosheet array on Ag nanowires for promoted hydrogen evolution reaction

纳米片 过电位 分解水 纳米线 材料科学 电化学 纳米结构 催化作用 化学工程 电解质 电解水 电解 制氢 纳米技术 析氧 电极 化学 物理化学 光催化 工程类 生物化学
作者
Hengxing Peng,Kailing Zhou,Yuhong Jin,Qianqian Zhang,Jingbing Liu,Hao Wang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:429: 132477-132477 被引量:30
标识
DOI:10.1016/j.cej.2021.132477
摘要

It is an efficient and green way to obtain hydrogen with the assistance of highly active and low-cost electrocatalysts by using the electrochemical water electrolysis process in the alkaline electrolyte. Herein, MoO3 particles-decorated Co(OH)2 nanosheet array with a hierarchical nanostructure wrapped Ag nanowires (MoO3-Co(OH)2@Ag NWs) electrocatalysts have been constructed via a two-step electrodeposition method. Ag nanowires have functioned as a conductive network to improve electron transportation ability. As-prepared MoO3-Co(OH)2@Ag NWs catalysts show good HER performance compared with the original Co(OH)2 by delivering at a low overpotential of 220 mV at a current density of −100 mA cm−2, while those for pristine Co(OH)2 and MoO3 are 290 and 412 mV, respectively. The good durability performance of the MoO3-Co(OH)2@Ag NWs catalyst can last for 29 h at a high current density of 100 mA cm−2 with negligible loss, demonstrating the possible commercial application in electrochemical water splitting. A theoretical study has been carried out to understand the reaction kinetics in the generated heterostructure (MoO3-Co(OH)2), which can significantly promote hydrogen evolution reaction process with the reduced adsorption energy of water (ΔGH2O*) and decreased Gibbs free-energy of adsorbed H* (ΔGH*) during the hydrogen evolution reaction process. This work can help us to design high-active catalysts with the heterointerface-dependent mechanism for electro-catalytic water splitting processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
馆长举报zyf求助涉嫌违规
1秒前
flac完成签到,获得积分10
1秒前
闹心发布了新的文献求助10
2秒前
zgtmark完成签到,获得积分10
2秒前
诗瑜发布了新的文献求助10
2秒前
3秒前
5秒前
6秒前
6秒前
7秒前
上官若男应助原子采纳,获得10
8秒前
11完成签到,获得积分10
8秒前
小明完成签到,获得积分10
8秒前
9秒前
诗瑜完成签到,获得积分10
9秒前
小蘑菇应助胡瓜拌凉皮采纳,获得10
9秒前
genova发布了新的文献求助10
10秒前
英吉利25发布了新的文献求助10
11秒前
12秒前
12秒前
豆豆发布了新的文献求助10
12秒前
ACTWILD发布了新的文献求助30
13秒前
14秒前
15秒前
三横一竖发布了新的文献求助10
15秒前
我是老大应助sss采纳,获得10
15秒前
16秒前
16秒前
17秒前
17秒前
色绝关注了科研通微信公众号
17秒前
18秒前
一叶孤舟发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
20秒前
LJX发布了新的文献求助10
21秒前
我是老大应助Achange采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4691683
求助须知:如何正确求助?哪些是违规求助? 4063206
关于积分的说明 12563260
捐赠科研通 3761191
什么是DOI,文献DOI怎么找? 2077309
邀请新用户注册赠送积分活动 1105824
科研通“疑难数据库(出版商)”最低求助积分说明 984418