Application of machine learning algorithms to predict the performance of coal gasification process

均方误差 近似误差 燃烧热 数学 决定系数 算法 相关系数 过程(计算) 工艺工程 统计 计算机科学 工程类 废物管理 化学 燃烧 操作系统 有机化学
作者
Zeynep Ceylan,Selim Ceylan
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 165-186 被引量:10
标识
DOI:10.1016/b978-0-12-821092-5.00003-6
摘要

The coal gasification process is one of the most convenient and clean coal technologies that convert coal into electricity, syngas, and other energy products. Thus, it is essential to estimate the outcomes of this process to obtain the optimum amount of product. Therefore, the main effort of this study is to evaluate the capability of various machine learning (ML) methods to predict gasification process output variables such as the product gas generation and product gas heating value. For this purpose, various regression models were created by using different ML algorithms such as Sequential Minimal Optimization Regression, Gaussian Process Regression, Lazy K-Star, Lazy IBk, Alternating Model Tree, Random Forest, and M5Rules. Coal properties such as fixed carbon, volatile matter, and mineral matter content and gasification process parameters, such as air feed per kg of coal, steam feed per kg of coal, and bed temperature were used as input parameters. The performances of the models were evaluated using various well-known statistical measures such as coefficient of determination (R2), the mean absolute error (MAE), root mean square error (RMSE), relative absolute error (RAE in %), and root relative squared error (RRSE in %). In the test dataset, the Random Forest model achieved the best results for both outputs with R2 = 0.9730, MAE = 0.0338, RMSE = 0.0451, RAE = 15.7148%, and RRSE = 19.1181% values for the prediction of the heating value of the product gas and R2 = 0.9928, MAE = 0.0214, RMSE = 0.0258, RAE = 8.8001%, and RRSE = 9.1592% values for prediction of the product gas generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
moreorless_zjh完成签到,获得积分10
4秒前
12发布了新的文献求助10
8秒前
Vegetable_Dog发布了新的文献求助10
9秒前
Lucas应助yy采纳,获得10
9秒前
10秒前
轻松绿旋完成签到,获得积分10
13秒前
13秒前
吃鱼的猫完成签到,获得积分10
14秒前
12完成签到,获得积分20
14秒前
neechine发布了新的文献求助10
15秒前
小巫发布了新的文献求助10
15秒前
汉堡包应助奋斗的紫霜采纳,获得10
16秒前
wbxj完成签到 ,获得积分10
19秒前
19秒前
abcd_1067发布了新的文献求助10
20秒前
lv完成签到,获得积分10
20秒前
小巫完成签到,获得积分10
20秒前
22秒前
qq关闭了qq文献求助
24秒前
25秒前
26秒前
kkk发布了新的文献求助10
27秒前
27秒前
万能图书馆应助lv采纳,获得10
28秒前
29秒前
huntme完成签到,获得积分10
29秒前
二两白茶发布了新的文献求助10
32秒前
Keto发布了新的文献求助10
32秒前
Hello应助淡然新蕾采纳,获得10
33秒前
lxy完成签到,获得积分10
35秒前
落幕发布了新的文献求助10
35秒前
37秒前
37秒前
二两白茶完成签到,获得积分10
40秒前
41秒前
歪比巴卜完成签到,获得积分10
41秒前
生动初蓝发布了新的文献求助10
41秒前
Lucas应助摇摇七喜采纳,获得30
41秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844974
求助须知:如何正确求助?哪些是违规求助? 3387193
关于积分的说明 10548004
捐赠科研通 3107875
什么是DOI,文献DOI怎么找? 1712196
邀请新用户注册赠送积分活动 824280
科研通“疑难数据库(出版商)”最低求助积分说明 774683