Review of machine learning and deep learning models in agriculture

人工智能 机器学习 深度学习 计算机科学 人工神经网络 农业 人口 地理 社会学 人口学 考古
作者
Fatih Bal,Fatih Kayaalp
出处
期刊:International advanced researches and engineering journal [International Advanced Researches and Engineering Journal]
卷期号:5 (2): 309-323 被引量:26
标识
DOI:10.35860/iarej.848458
摘要

Machine learning (ML) refers to the processes that enable computers to think based on various learning methods. It can be also called domain which is a subset of Artificial Intelligence (AI). Deep learning (DL) has been a promising, new and modern technique for data analysis in recent years. It can be shown as the improved version of Artificial Neural Networks (ANN) which is one of the popular AI methods of today. The population of the world is increasing day by day and the importance of agriculture is also increasing in parallel. Because of this, many researchers have focused on this issue and have tried to apply machine learning and deep learning methods in agriculture under the name of smart farm technologies both to increase agricultural production and to solve some challenges of agriculture. In this study, it is aimed to give detailed information about these up-to-date studies. 77 articles based on machine learning and deep learning algorithms in the agriculture field and published in IEEE Xplore, ScienceDirect, Web of Science and Scopus publication databases between 2016 and 2020 years were reviewed. The articles were classified under five categories as plant recognition, disease detection, weed and pest detection, soil mapping-drought index, and yield forecast. They were examined in detail in terms of machine learning/deep learning architectures, data sets, performance metrics (Accuracy, Precision, Recall, F-Score, R2, MAPE, RMSE, MAE), and the obtained experimental results. Based on the examined articles, the most popular methods, used data sets/types, chosen performance criteria, and performance results among the existing studies are presented. It is seen that the number of AI-based applications related to agriculture is increasing compared to the past and the sustainability in productivity is so promising.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
feliciaaa完成签到,获得积分10
1秒前
1秒前
LeoChris发布了新的文献求助10
1秒前
整齐红酒发布了新的文献求助10
2秒前
发生了什么树完成签到,获得积分10
2秒前
sb发布了新的文献求助10
2秒前
3秒前
阿九完成签到,获得积分10
4秒前
ooo娜发布了新的文献求助10
4秒前
上官若男应助XDGY采纳,获得10
4秒前
汉堡包应助kohu采纳,获得10
5秒前
英姑应助英勇的香芦采纳,获得10
5秒前
whh123发布了新的文献求助10
5秒前
6秒前
JamesPei应助LeoChris采纳,获得10
7秒前
熬夜猫完成签到,获得积分10
7秒前
张国浩发布了新的文献求助10
9秒前
whh123完成签到,获得积分10
10秒前
lixxx发布了新的文献求助10
10秒前
cm357558984发布了新的文献求助10
10秒前
胡杨柳完成签到,获得积分10
11秒前
KANG完成签到,获得积分10
12秒前
12秒前
14秒前
昨夜書发布了新的文献求助10
14秒前
兴奋冷松完成签到,获得积分10
16秒前
17秒前
zhai完成签到,获得积分10
17秒前
karulko完成签到,获得积分10
17秒前
开小森发布了新的文献求助10
17秒前
直率的费曼完成签到,获得积分10
18秒前
XDGY发布了新的文献求助10
18秒前
111完成签到,获得积分10
18秒前
cui123完成签到 ,获得积分10
19秒前
19秒前
辛勤乌龟关注了科研通微信公众号
19秒前
XMC2022发布了新的文献求助10
20秒前
啊哈哈哈给啊哈哈哈的求助进行了留言
20秒前
Lucas应助light采纳,获得10
20秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842025
求助须知:如何正确求助?哪些是违规求助? 3384185
关于积分的说明 10533034
捐赠科研通 3104519
什么是DOI,文献DOI怎么找? 1709644
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953