Multiplexed Immunohistochemistry and Digital Pathology as the Foundation for Next-Generation Pathology in Melanoma: Methodological Comparison and Future Clinical Applications

数字化病理学 计算机科学 免疫疗法 仿形(计算机编程) 分子病理学 黑色素瘤 肿瘤异质性 液体活检 医学 病理 免疫系统 人工智能 生物 癌症研究 癌症 免疫学 内科学 操作系统 基因 生物化学
作者
Yannick Van Herck,Asier Antoranz,Madhavi Dipak Andhari,Giorgia Milli,Oliver Bechter,Frederik De Smet,Francesca M. Bosisio
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:25
标识
DOI:10.3389/fonc.2021.636681
摘要

The state-of-the-art for melanoma treatment has recently witnessed an enormous revolution, evolving from a chemotherapeutic, "one-drug-for-all" approach, to a tailored molecular- and immunological-based approach with the potential to make personalized therapy a reality. Nevertheless, methods still have to improve a lot before these can reliably characterize all the tumoral features that make each patient unique. While the clinical introduction of next-generation sequencing has made it possible to match mutational profiles to specific targeted therapies, improving response rates to immunotherapy will similarly require a deep understanding of the immune microenvironment and the specific contribution of each component in a patient-specific way. Recent advancements in artificial intelligence and single-cell profiling of resected tumor samples are paving the way for this challenging task. In this review, we provide an overview of the state-of-the-art in artificial intelligence and multiplexed immunohistochemistry in pathology, and how these bear the potential to improve diagnostics and therapy matching in melanoma. A major asset of in-situ single-cell profiling methods is that these preserve the spatial distribution of the cells in the tissue, allowing researchers to not only determine the cellular composition of the tumoral microenvironment, but also study tissue sociology, making inferences about specific cell-cell interactions and visualizing distinctive cellular architectures - all features that have an impact on anti-tumoral response rates. Despite the many advantages, the introduction of these approaches requires the digitization of tissue slides and the development of standardized analysis pipelines which pose substantial challenges that need to be addressed before these can enter clinical routine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗条梦玉完成签到,获得积分10
2秒前
小杨完成签到,获得积分10
2秒前
在水一方应助ButtcherFly采纳,获得10
2秒前
xxfsx应助洛丹伦的夏采纳,获得10
3秒前
3秒前
qiao完成签到,获得积分10
4秒前
北北北应助科研通管家采纳,获得10
4秒前
916应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
916应助科研通管家采纳,获得10
4秒前
9377应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
lyh关注了科研通微信公众号
4秒前
苗条梦玉发布了新的文献求助10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
嘿嘿应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
嘿嘿应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得30
5秒前
是风动完成签到 ,获得积分10
6秒前
李海完成签到,获得积分20
6秒前
6秒前
7秒前
7秒前
8秒前
刘兆亮发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
大模型应助SinaiPen采纳,获得10
13秒前
panpan发布了新的文献求助10
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457576
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292352
捐赠科研通 4488625
什么是DOI,文献DOI怎么找? 2458636
邀请新用户注册赠送积分活动 1448632
关于科研通互助平台的介绍 1424287