A CNN Model: Earlier Diagnosis and Classification of Alzheimer Disease using MRI

人工智能 卷积神经网络 深度学习 计算机科学 痴呆 机器学习 疾病 磁共振成像 神经影像学 上下文图像分类 人工神经网络 模式识别(心理学) 图像(数学) 医学 病理 放射科 精神科
作者
Ahmad Waleed Salehi,Preety Baglat,Brij Bhushan Sharma,Gaurav Gupta,Ankita Upadhya
出处
期刊:2020 International Conference on Smart Electronics and Communication (ICOSEC) 卷期号:: 156-161 被引量:106
标识
DOI:10.1109/icosec49089.2020.9215402
摘要

Alzheimer 's Disease (AD) is the most common form of dementia that can lead to a neurological brain disorder that causes progressive memory loss as a result of damaging the brain cells and the ability to perform daily activities. Using MRI (Magnetic Resonance Imaging) scan brain images, we can get the help of Artificial intelligence (AI) technology for detection and prediction of this disease and classify the AD patients whether they have or may not have this deadly disease in future. The main purpose of doing all this is to make the best prediction and detection tools for the help of radiologists, doctors, caregivers to save time, cost, and help the patient suffering from this disease. In recent years, the Deep Learning (DL) algorithms are very useful for the diagnosis of AD as DL algorithms work well with large datasets. In this paper, we have implemented Convolutional Neural Network (CNN) for the earlier diagnosis and classification of AD using MRI images, the ADNI 3 class of images with the total number of 1512 mild, 2633 normal and 2480 AD were used. A significant accuracy of 99% achieved in which the model performed well as we compared with many other related works. Furthermore, we also compared the result with our previous work on which ma-chine learning algorithms were applied using OASIS dataset and it showed that when dealing with large amount of data like medical data the deep learning approaches can be a better option over the traditional machine learning techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆子完成签到 ,获得积分10
1秒前
2秒前
2秒前
wu发布了新的文献求助10
5秒前
不安豁完成签到,获得积分10
6秒前
6秒前
陈陈陈发布了新的文献求助10
7秒前
8秒前
眼睛大的乐儿完成签到,获得积分10
8秒前
南曦完成签到,获得积分20
8秒前
Jason发布了新的文献求助10
9秒前
9秒前
凌灵翎完成签到,获得积分10
10秒前
Hello应助小芦铃采纳,获得10
11秒前
哆啦A涵发布了新的文献求助10
12秒前
港岛妹妹发布了新的文献求助10
12秒前
13秒前
失眠紫真完成签到,获得积分10
13秒前
wu完成签到,获得积分20
14秒前
ZZICU完成签到,获得积分10
15秒前
16秒前
香菜头完成签到 ,获得积分10
16秒前
17秒前
18秒前
18秒前
酷波er应助arthur采纳,获得10
19秒前
俗签发布了新的文献求助20
20秒前
20秒前
21秒前
小李呀发布了新的文献求助10
22秒前
22秒前
英俊的铭应助zqh采纳,获得10
24秒前
chi完成签到 ,获得积分10
24秒前
25秒前
布布爱吃炸鸡完成签到,获得积分10
25秒前
斯文败类应助机灵雨南采纳,获得10
25秒前
清爽博超完成签到,获得积分10
25秒前
自信书文发布了新的文献求助10
25秒前
26秒前
任婵娟发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069566
求助须知:如何正确求助?哪些是违规求助? 4290887
关于积分的说明 13368927
捐赠科研通 4111055
什么是DOI,文献DOI怎么找? 2251251
邀请新用户注册赠送积分活动 1256459
关于科研通互助平台的介绍 1188939