乙二醇
光致聚合物
材料科学
自愈水凝胶
生物分子
纳米技术
寡核苷酸
光引发剂
聚合物
聚合
高分子化学
DNA
化学
单体
有机化学
复合材料
生物化学
作者
Phillip J. Dorsey,Moshe Rubanov,Wenlu Wang,Rebecca Schulman
出处
期刊:ACS Macro Letters
[American Chemical Society]
日期:2019-08-20
卷期号:8 (9): 1133-1140
被引量:28
标识
DOI:10.1021/acsmacrolett.9b00450
摘要
Soft biomaterials possessing structural hierarchy have growing applications in lab-on-chip devices, artificial tissues, and micromechanical and chemomechanical systems. The ability to integrate sets of biomolecules, specifically DNA, within hydrogel substrates at precise locations could offer the potential to form and modulate complex biochemical processes with DNA-based molecular switches in such materials and provide a means of creating dynamic spatial patterns, thus enabling spatiotemporal control of a wide array of reaction-diffusion phenomena prevalent in biological systems. Here we develop a means of photopatterning two-dimensional DNA-functionalized poly(ethylene glycol) diacrylate (PEGDA) hydrogel architectures with an aim toward these applications. While PEGDA photopatterning methods are well-established for the fabrication of hydrogels, including those containing oligonucleotides, the photoinitiators typically used have significant crosstalk with many UV-photoswitchable chemistries including nitrobenzyl derivatives. We demonstrate the digital photopatterning of PEGDA-co-DNA hydrogels using a blue light-absorbing (470 nm peak) photoinitiator system and macromer comprised of camphorquinone, triethanolamine, and poly(ethylene glycol) diacrylate (Mn = 575) that minimizes absorption in the UV-A wavelength range commonly used to trigger photoswitchable chemistries. We demonstrate this method using digital maskless photolithography within microfluidic devices that allows for the reliable construction of multidomain structures. The method achieves feature resolutions as small as 25 μm, and the resulting materials allow for lateral isotropic bulk diffusion of short single-stranded (ss) DNA oligonucleotides. Finally, we show how the use of these photoinitiators allows for orthogonal control of photopolymerization and UV-photoscission of acrylate-modified DNA containing a 1-(2-nitrophenyl) ethyl spacer to selectively cleave DNA from regions of a PEGDA substrate.
科研通智能强力驱动
Strongly Powered by AbleSci AI