Application of Alumina-Based Ceramic Paste for High-Temperature Electronics Packaging

材料科学 陶瓷 复合材料 微晶 温度循环 固化(化学) 粘结强度 X射线光电子能谱 傅里叶变换红外光谱 胶粘剂 冶金 化学工程 热的 图层(电子) 气象学 工程类 物理
作者
Ardalan Nasiri,Simon S. Ang
出处
期刊:Journal of Electronic Packaging [ASM International]
卷期号:143 (2) 被引量:14
标识
DOI:10.1115/1.4049292
摘要

Abstract Alumina-based die-attach and encapsulation for high-temperature (300–500 °C) electronic packaging were investigated. The alumina paste material comprises aluminum dihydric phosphate as a binder and alumina powder as a filler with embedded nano-aluminum nitride and nanosilica powders to promote its curing process, reduce its curing tension, and increase its bond shear strength. The chip-to-substrate bond strength was enhanced and met the MIL-STD-883 2019.9 requirements for die-attach assembly. Its encapsulation property was improved with fewer cracks compared to similar commercial ceramic encapsulants. The die-attach material and encapsulation properties tested at 500 °C showed no defect or additional cracks. Thermal aging and thermal cycling were carried out on the samples. X-ray photo-electron spectroscopy (XPS) analysis revealed a higher oxygen bonding percentage for the 10% nanosilica ceramic sample than the samples with no nanosilica. XRD peak broadening is largest for the 10% nanosilica ceramic, which indicated smaller crystallite sizes. The smaller crystallite size for the 10% nanosilica sample introduces a larger microstrain to the alumina crystal structure. FTIR revealed the presence of alumina-silicate bonds on these samples with the largest amount present in the 10% nanosilica samples. Si-O and Al-O bonds were observed from FTIR on nanosilica samples especially the higher than 10% nanosilica samples. SEM and energy dispersive X-ray (EDX) results showed a uniform bond line for the 10% sample and uniform material distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hd关闭了hd文献求助
1秒前
邱佩群完成签到 ,获得积分10
1秒前
空空完成签到,获得积分10
1秒前
FashionBoy应助李阳采纳,获得10
2秒前
2秒前
4秒前
斯文败类应助破晓星采纳,获得10
5秒前
5秒前
7秒前
tyy完成签到 ,获得积分10
8秒前
10秒前
情怀应助工艺员采纳,获得10
10秒前
哎哟可爱发布了新的文献求助10
10秒前
藤椒辣鱼应助友好太兰采纳,获得10
11秒前
陈瑾初发布了新的文献求助10
11秒前
11秒前
13秒前
TCAcycle发布了新的文献求助10
14秒前
邵将发布了新的文献求助10
14秒前
15秒前
打打应助鲤鱼新儿采纳,获得30
16秒前
16秒前
Roy发布了新的文献求助10
16秒前
万点草发布了新的文献求助30
17秒前
20秒前
127完成签到,获得积分10
20秒前
21秒前
哎哟可爱完成签到,获得积分10
21秒前
22秒前
hd发布了新的文献求助10
23秒前
xu发布了新的文献求助10
23秒前
桐桐应助asdf采纳,获得10
24秒前
白三烯小童鞋完成签到 ,获得积分10
24秒前
24秒前
浮游应助依依采纳,获得10
25秒前
冷酷的浩天完成签到,获得积分10
26秒前
26秒前
xiu-er发布了新的文献求助10
27秒前
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287927
求助须知:如何正确求助?哪些是违规求助? 4439938
关于积分的说明 13823438
捐赠科研通 4322173
什么是DOI,文献DOI怎么找? 2372367
邀请新用户注册赠送积分活动 1367876
关于科研通互助平台的介绍 1331448