连接体
连接组学
神经编码
神经科学
计算机科学
接线图
人工神经网络
突触重量
神经网络
钙显像
模块化设计
编码(社会科学)
生物神经网络
人工智能
生物
功能连接
数学
化学
工程类
统计
有机化学
电气工程
钙
操作系统
作者
Ashwin Vishwanathan,Alexandro D. Ramirez,Jingpeng Wu,Alex Sood,Runzhe Yang,Nico Kemnitz,Dodam Ih,Nicholas L. Turner,Kisuk Lee,Ignacio Tartavull,William Silversmith,Chris S. Jordan,Celia David,Doug Bland,Mark S. Goldman,Emre Aksay,H. Sebastian Seung
标识
DOI:10.1101/2020.10.28.359620
摘要
Abstract How much can connectomes with synaptic resolution help us understand brain function? An optimistic view is that a connectome is a major determinant of brain function and a key substrate for simulating a brain. Here we investigate the explanatory power of connectomics using a wiring diagram reconstructed from a larval zebrafish brainstem. We identify modules of strongly connected neurons that turn out to be specialized for different behavioral functions, the control of eye and body movements. We then build a neural network model using a synaptic weight matrix based on the reconstructed wiring diagram. This leads to predictions that statistically match the neural coding of eye position as observed by calcium imaging. Our work shows the promise of connectome-based brain modeling to yield experimentally testable predictions of neural activity and behavior, as well as mechanistic explanations of low-dimensional neural dynamics, a widely observed phenomenon in nervous systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI