Neural Network Potential Energy Surfaces for Small Molecules and Reactions

维数之咒 可见的 不变(物理) 统计物理学 量子 化学 势能 极限(数学) 功能(生物学) 势能面 光学(聚焦) 从头算 计算机科学 计算化学 量子力学 人工智能 物理 数学 数学分析 有机化学 进化生物学 光学 生物
作者
Sergei Manzhos,Tucker Carrington
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:121 (16): 10187-10217 被引量:250
标识
DOI:10.1021/acs.chemrev.0c00665
摘要

We review progress in neural network (NN)-based methods for the construction of interatomic potentials from discrete samples (such as ab initio energies) for applications in classical and quantum dynamics including reaction dynamics and computational spectroscopy. The main focus is on methods for building molecular potential energy surfaces (PES) in internal coordinates that explicitly include all many-body contributions, even though some of the methods we review limit the degree of coupling, due either to a desire to limit computational cost or to limited data. Explicit and direct treatment of all many-body contributions is only practical for sufficiently small molecules, which are therefore our primary focus. This includes small molecules on surfaces. We consider direct, single NN PES fitting as well as more complex methods that impose structure (such as a multibody representation) on the PES function, either through the architecture of one NN or by using multiple NNs. We show how NNs are effective in building representations with low-dimensional functions including dimensionality reduction. We consider NN-based approaches to build PESs in the sums-of-product form important for quantum dynamics, ways to treat symmetry, and issues related to sampling data distributions and the relation between PES errors and errors in observables. We highlight combinations of NNs with other ideas such as permutationally invariant polynomials or sums of environment-dependent atomic contributions, which have recently emerged as powerful tools for building highly accurate PESs for relatively large molecular and reactive systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燃烧的火柴完成签到,获得积分10
刚刚
难过千凡发布了新的文献求助10
1秒前
现代CC完成签到 ,获得积分10
2秒前
4秒前
科研通AI6.1应助LucyMartinez采纳,获得10
5秒前
melon发布了新的文献求助10
5秒前
6秒前
6秒前
冷静的手套完成签到 ,获得积分10
9秒前
10秒前
无花果应助良辰采纳,获得10
11秒前
Akim应助小白采纳,获得10
12秒前
星辰大海应助难过千凡采纳,获得10
12秒前
niufuking发布了新的文献求助10
13秒前
13秒前
15秒前
橘生饼发布了新的文献求助10
17秒前
17秒前
属鼠我啊发布了新的文献求助10
18秒前
19秒前
19秒前
MSYzack发布了新的文献求助10
25秒前
生动的凝蕊完成签到 ,获得积分20
25秒前
醒醒完成签到,获得积分20
27秒前
Lucas应助juan采纳,获得10
28秒前
黑猫完成签到,获得积分10
28秒前
28秒前
结实抽屉完成签到,获得积分10
29秒前
29秒前
tonyguo完成签到,获得积分10
30秒前
Lucas应助唠叨的导师采纳,获得10
32秒前
难过千凡发布了新的文献求助10
32秒前
青柠完成签到 ,获得积分10
35秒前
白桦完成签到,获得积分20
35秒前
田T应助Fred采纳,获得10
37秒前
天天快乐应助LucyMartinez采纳,获得10
40秒前
43秒前
lct360完成签到,获得积分10
45秒前
SiriHow应助DXM采纳,获得10
45秒前
三三完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870051
求助须知:如何正确求助?哪些是违规求助? 6457786
关于积分的说明 15662561
捐赠科研通 4986068
什么是DOI,文献DOI怎么找? 2688646
邀请新用户注册赠送积分活动 1630981
关于科研通互助平台的介绍 1589097