Neural Network Potential Energy Surfaces for Small Molecules and Reactions

维数之咒 可见的 不变(物理) 统计物理学 量子 化学 势能 极限(数学) 功能(生物学) 势能面 光学(聚焦) 从头算 计算机科学 计算化学 量子力学 人工智能 物理 数学 数学分析 有机化学 进化生物学 光学 生物
作者
Sergei Manzhos,Tucker Carrington
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:121 (16): 10187-10217 被引量:250
标识
DOI:10.1021/acs.chemrev.0c00665
摘要

We review progress in neural network (NN)-based methods for the construction of interatomic potentials from discrete samples (such as ab initio energies) for applications in classical and quantum dynamics including reaction dynamics and computational spectroscopy. The main focus is on methods for building molecular potential energy surfaces (PES) in internal coordinates that explicitly include all many-body contributions, even though some of the methods we review limit the degree of coupling, due either to a desire to limit computational cost or to limited data. Explicit and direct treatment of all many-body contributions is only practical for sufficiently small molecules, which are therefore our primary focus. This includes small molecules on surfaces. We consider direct, single NN PES fitting as well as more complex methods that impose structure (such as a multibody representation) on the PES function, either through the architecture of one NN or by using multiple NNs. We show how NNs are effective in building representations with low-dimensional functions including dimensionality reduction. We consider NN-based approaches to build PESs in the sums-of-product form important for quantum dynamics, ways to treat symmetry, and issues related to sampling data distributions and the relation between PES errors and errors in observables. We highlight combinations of NNs with other ideas such as permutationally invariant polynomials or sums of environment-dependent atomic contributions, which have recently emerged as powerful tools for building highly accurate PESs for relatively large molecular and reactive systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助阿焦采纳,获得10
1秒前
1秒前
5秒前
5秒前
略略完成签到,获得积分10
7秒前
自觉向秋发布了新的文献求助10
7秒前
爆米花应助妮妮采纳,获得10
9秒前
大力笑容完成签到,获得积分20
9秒前
YOYORosey发布了新的文献求助10
10秒前
年鱼精完成签到 ,获得积分10
11秒前
LHQ完成签到 ,获得积分10
12秒前
Alanni完成签到 ,获得积分10
13秒前
傲娇中蓝完成签到,获得积分10
15秒前
小棠完成签到 ,获得积分10
16秒前
CipherSage应助科研小笨猪采纳,获得10
16秒前
LL发布了新的文献求助10
16秒前
17秒前
123发布了新的文献求助20
17秒前
18秒前
19秒前
zjy发布了新的文献求助10
20秒前
学术乞丐发布了新的文献求助10
23秒前
23秒前
无语的断缘完成签到,获得积分10
23秒前
24秒前
瓜瓜瓜完成签到 ,获得积分10
26秒前
科研通AI6.1应助微尘采纳,获得10
27秒前
情怀应助linin采纳,获得30
27秒前
成成成完成签到 ,获得积分20
27秒前
29秒前
30秒前
上官若男应助自觉向秋采纳,获得10
30秒前
小二郎应助123采纳,获得10
30秒前
善学以致用应助LL采纳,获得10
31秒前
丘比特应助123采纳,获得10
31秒前
31秒前
SciGPT应助pzhxsy采纳,获得10
31秒前
高大绝义完成签到,获得积分10
32秒前
35秒前
hujin发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Competency Based Human Resource Management 500
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5863398
求助须知:如何正确求助?哪些是违规求助? 6391189
关于积分的说明 15648736
捐赠科研通 4977385
什么是DOI,文献DOI怎么找? 2684973
邀请新用户注册赠送积分活动 1628103
关于科研通互助平台的介绍 1585802