已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Low-cost GelSight with UV Markings: Feature Extraction of Objects Using AlexNet and Optical Flow without 3D Image Reconstruction

人工智能 计算机视觉 计算机科学 特征提取 光流 卷积神经网络 图像传感器 不透明度 材料科学 模式识别(心理学) 光学 图像(数学) 物理
作者
Alexander C. Abad,Anuradha Ranasinghe
标识
DOI:10.1109/icra40945.2020.9197264
摘要

GelSight sensor has been used to study microgeometry of objects since 2009 in tactile sensing applications. Elastomer, reflective coating, lighting, and camera were the main challenges of making a GelSight sensor within a short period. The recent addition of permanent markers to the GelSight was a new era in shear/slip studies. In our previous studies, we introduced Ultraviolet (UV) ink and UV LEDs as a new form of marker and lighting respectively. UV ink markers are invisible using ordinary LED but can be made visible using UV LED. Currently, recognition of objects or surface textures using GelSight sensor is done using fusion of camera-only images and GelSight captured images with permanent markings. Those images are fed to Convolutional Neural Networks (CNN) to classify objects. However, our novel approach in using low-cost GelSight sensor with UV markings, the 3D height map to 2D image conversion, and the additional non-Gelsight captured images for training the CNN can be eliminated. AlexNet and optical flow algorithm have been used for feature recognition of five coins without UV markings and shear/slip of the coin in GelSight with UV markings respectively. Our results on confusion matrix show that, on average coin recognition can reach 93.4% without UV markings using AlexNet. Therefore, our novel method of using GelSight with UV markings would be useful to recognize full/partial object, shear/slip, and force applied to the objects without any 3D image reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rachel发布了新的文献求助10
刚刚
yu发布了新的文献求助10
刚刚
1秒前
2秒前
爱吃牛小排完成签到 ,获得积分20
3秒前
3秒前
ftl发布了新的文献求助10
4秒前
5秒前
科研通AI5应助怕黑海冬采纳,获得10
5秒前
7秒前
英姑应助adrift采纳,获得10
8秒前
852应助keyan_xiaojiang采纳,获得20
9秒前
Emma发布了新的文献求助10
9秒前
10秒前
rui12发布了新的文献求助10
10秒前
10秒前
lun完成签到 ,获得积分10
10秒前
走廊邓完成签到,获得积分10
10秒前
12秒前
阳光c完成签到 ,获得积分10
13秒前
lun关注了科研通微信公众号
14秒前
丸子鱼完成签到 ,获得积分10
16秒前
Emma完成签到,获得积分10
16秒前
儒雅香彤完成签到 ,获得积分10
17秒前
vghvvjg发布了新的文献求助10
17秒前
17秒前
18秒前
无花果应助知性的十三采纳,获得10
20秒前
桐桐应助糊涂小医仙采纳,获得10
21秒前
走廊邓发布了新的文献求助10
23秒前
鱼鱼发布了新的文献求助10
24秒前
adrift发布了新的文献求助10
25秒前
小马甲应助vghvvjg采纳,获得10
25秒前
李健应助跳跃金鑫采纳,获得10
25秒前
26秒前
26秒前
28秒前
28秒前
woreaixuexi完成签到,获得积分10
28秒前
28秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840562
求助须知:如何正确求助?哪些是违规求助? 3382618
关于积分的说明 10525239
捐赠科研通 3102238
什么是DOI,文献DOI怎么找? 1708728
邀请新用户注册赠送积分活动 822662
科研通“疑难数据库(出版商)”最低求助积分说明 773465