Semi-Supervised Clustering With Constraints of Different Types From Multiple Information Sources

模式识别(心理学) 约束聚类 相关聚类 机器学习 模糊聚类 光谱聚类
作者
Liang Bai,Jiye Liang,Fuyuan Cao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:43 (9): 3247-3258 被引量:7
标识
DOI:10.1109/tpami.2020.2979699
摘要

Semi-supervised clustering is one of important research topics in cluster analysis, which uses pre-given knowledge as constraints to improve the clustering performance. While clustering a data set, people often get prior constraints from different information sources, which may have different representations and contents, to guide clustering process. However, most of existing semi-supervised clustering algorithms are based on single-source constraints and rarely consider to integrate multi-source constraints to enhance the clustering quality. To solve the problem, we analyze the relations among different types of constraints and propose an uniform representation for them. Based it, we propose a new semi-supervised clustering algorithm to find out a clustering that has good cluster structure and high consensus of all the sources of constraints. In the algorithm, we construct an optimization objective model and its solution method to achieve the aim. This algorithm can integrate multi-source constraints well to reduce the effect of incorrect constraints from single sources and find out a high-quality clustering. By the experimental studies on several benchmark data sets, we illustrate the effectiveness of the proposed algorithm, compared to other semi-supervised clustering algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助玄天明月采纳,获得10
1秒前
月上柳梢头完成签到 ,获得积分10
1秒前
可爱豆芽发布了新的文献求助10
2秒前
2秒前
赘婿应助Jayjay采纳,获得10
2秒前
2秒前
3秒前
忐忑的金针菇完成签到 ,获得积分10
4秒前
坦率完成签到,获得积分10
4秒前
wy.he应助阿欢采纳,获得10
6秒前
仁爱的可乐完成签到,获得积分10
6秒前
yuln发布了新的文献求助10
7秒前
纸速度发布了新的文献求助10
7秒前
7秒前
7秒前
xxp完成签到,获得积分10
9秒前
tysun发布了新的文献求助10
9秒前
9秒前
修仙中应助蜗牛采纳,获得10
11秒前
雾醉舟发布了新的文献求助10
11秒前
所所应助扬之水采纳,获得10
11秒前
猫一样的完成签到,获得积分10
12秒前
晴天发布了新的文献求助10
12秒前
wzy发布了新的文献求助10
12秒前
神秘的刘安实完成签到 ,获得积分10
12秒前
高大的沧海完成签到,获得积分10
13秒前
13秒前
挽星完成签到 ,获得积分10
13秒前
elgar612发布了新的文献求助10
13秒前
Dumbledonut完成签到,获得积分20
13秒前
1117完成签到 ,获得积分10
14秒前
orixero应助livra1058采纳,获得10
14秒前
桐桐应助Shenchen采纳,获得10
15秒前
16秒前
qqqqqq完成签到,获得积分10
18秒前
lisaltp完成签到 ,获得积分10
18秒前
小蘑菇应助纯真的灵珊采纳,获得10
18秒前
19秒前
liu关闭了liu文献求助
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263241
求助须知:如何正确求助?哪些是违规求助? 4423888
关于积分的说明 13771111
捐赠科研通 4298829
什么是DOI,文献DOI怎么找? 2358729
邀请新用户注册赠送积分活动 1354999
关于科研通互助平台的介绍 1316209