External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules

医学 恶性肿瘤 卷积神经网络 肺癌 结核(地质) 人工智能 放射科 肺孤立结节 病理 计算机科学 计算机断层摄影术 古生物学 生物
作者
David Baldwin,Jennifer Gustafson,L. Pickup,Carlos Arteta,Petr Novotný,Jérôme Declerck,Timor Kadir,Catarina Figueiras,Albert Sterba,Alan Exell,Václav Potěšil,P. Holland,Hazel Spence,Alison Clubley,Emma O’Dowd,Matthew M. Clark,Victoria Ashford-Turner,Matthew Callister,Fergus Gleeson
出处
期刊:Thorax [BMJ]
卷期号:75 (4): 306-312 被引量:181
标识
DOI:10.1136/thoraxjnl-2019-214104
摘要

Background Estimation of the risk of malignancy in pulmonary nodules detected by CT is central in clinical management. The use of artificial intelligence (AI) offers an opportunity to improve risk prediction. Here we compare the performance of an AI algorithm, the lung cancer prediction convolutional neural network (LCP-CNN), with that of the Brock University model, recommended in UK guidelines. Methods A dataset of incidentally detected pulmonary nodules measuring 5–15 mm was collected retrospectively from three UK hospitals for use in a validation study. Ground truth diagnosis for each nodule was based on histology (required for any cancer), resolution, stability or (for pulmonary lymph nodes only) expert opinion. There were 1397 nodules in 1187 patients, of which 234 nodules in 229 (19.3%) patients were cancer. Model discrimination and performance statistics at predefined score thresholds were compared between the Brock model and the LCP-CNN. Results The area under the curve for LCP-CNN was 89.6% (95% CI 87.6 to 91.5), compared with 86.8% (95% CI 84.3 to 89.1) for the Brock model (p≤0.005). Using the LCP-CNN, we found that 24.5% of nodules scored below the lowest cancer nodule score, compared with 10.9% using the Brock score. Using the predefined thresholds, we found that the LCP-CNN gave one false negative (0.4% of cancers), whereas the Brock model gave six (2.5%), while specificity statistics were similar between the two models. Conclusion The LCP-CNN score has better discrimination and allows a larger proportion of benign nodules to be identified without missing cancers than the Brock model. This has the potential to substantially reduce the proportion of surveillance CT scans required and thus save significant resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rrrrrrry发布了新的文献求助10
刚刚
夏雪儿完成签到,获得积分10
1秒前
2秒前
陈子宇完成签到 ,获得积分10
2秒前
yourenpkma123完成签到,获得积分20
2秒前
陈仙仙完成签到,获得积分10
3秒前
舒心的天完成签到,获得积分10
3秒前
希望天下0贩的0应助dll采纳,获得10
3秒前
3秒前
LDDD完成签到,获得积分10
4秒前
4秒前
研友_VZG7GZ应助拾伍采纳,获得10
4秒前
4秒前
5秒前
tdtk发布了新的文献求助10
6秒前
123完成签到,获得积分10
8秒前
8秒前
Roachw完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
geold完成签到,获得积分10
11秒前
曾经的贞完成签到,获得积分10
14秒前
FFFFFFG完成签到,获得积分10
14秒前
Hilda007完成签到,获得积分0
15秒前
胡帅发布了新的文献求助10
16秒前
今后应助乐正一兰采纳,获得10
16秒前
子寒完成签到,获得积分10
16秒前
从容安波完成签到 ,获得积分10
19秒前
19秒前
19秒前
情怀应助健忘的夜阑采纳,获得10
19秒前
小瑄完成签到 ,获得积分10
20秒前
科研通AI6应助怕黑的魂幽采纳,获得10
21秒前
活泼的冬瓜完成签到,获得积分10
22秒前
tdtk发布了新的文献求助10
23秒前
23秒前
zxs发布了新的文献求助10
23秒前
pengnanhao完成签到,获得积分10
23秒前
赘婿应助三两三采纳,获得10
24秒前
JamesPei应助llllhh采纳,获得10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5535016
求助须知:如何正确求助?哪些是违规求助? 4622944
关于积分的说明 14584253
捐赠科研通 4563195
什么是DOI,文献DOI怎么找? 2500852
邀请新用户注册赠送积分活动 1480070
关于科研通互助平台的介绍 1451423