静电纺丝
心肌细胞
材料科学
脚手架
纳米纤维
3D打印
组织工程
生物医学工程
过程(计算)
细胞生物学
纳米-
纳米技术
生物
计算机科学
工程类
复合材料
聚合物
操作系统
作者
Miji Yeo,GeunHyung Kim
标识
DOI:10.1016/j.actbio.2020.02.042
摘要
Human skeletal muscle is composed of intricate anatomical structures, including uniaxially arranged myotubes and widely distributed blood capillaries. In this regard, vascularization is an essential part of the successful development of an engineered skeletal muscle tissue to restore its function and physiological activities. In this paper, we propose a method to obtain a platform for co-culturing human umbilical vein endothelial cells (HUVECs) and C2C12 cells using cell electrospinning and 3D bioprinting. To elaborate, on the surface of mechanical supporters (polycaprolactone and collagen struts) with a topographical cue, HUVECs-laden alginate bioink was uniaxially electrospun. The electrospun HUVECs showed high cell viability (90%), homogeneous cell distribution, and efficient HUVEC growth. Furthermore, the myoblasts (C2C12 cells), which were seeded on the vascularized structure (HUVECs-laden fibers), were co-cultured to facilitate myoblast regeneration. As a result, the scaffold that included myoblasts and HUVECs represented a high degree of the myosin heavy chain (MHC) with striated patterns and enhanced myogenic-specific gene expressions (MyoD, troponin T, MHC and myogenin) as compared to the scaffold that included only myoblasts. Cell electrospinning is an advanced electrospinning method that improves cell–matrix interactions by embedding cells directly into micro/nanofibers. Here, cell electrospinning was employed to achieve not only the homogeneous human umbilical vein endothelial cells (HUVECs) distribution with a high cell-viability (~90%), but also highly aligned topographical cue. Moreover, the uniaxially micropatterned PCL/collagen struts as a physical support were generated using three-dimensional (3D) printing, and was covered with HUVEC-laden micro/nanofibers. This hierarchical structure provided meaningful mechanical stability, homogeneous cell distribution, and HUVEC transformation into a narrow, elongated structure. Furthermore, the myoblasts (C2C12 cells) were seeded on the HUVECs-laden fibers and cocultured to facilitate myogenesis. In brief, a myosin heavy chain with striated patterns and enhanced myogenic specific gene expressions were represented.
科研通智能强力驱动
Strongly Powered by AbleSci AI