New hybrid data mining model for credit scoring based on feature selection algorithm and ensemble classifiers

特征选择 计算机科学 人工智能 朴素贝叶斯分类器 集成学习 支持向量机 决策树 机器学习 多数决原则 数据挖掘 加权投票 投票 数据预处理 统计分类 分类器(UML) 预处理器 特征(语言学) 模式识别(心理学) 语言学 哲学 政治 政治学 法学
作者
Jasmina Nalić,Goran Martinović,Drago Žagar
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:45: 101130-101130 被引量:48
标识
DOI:10.1016/j.aei.2020.101130
摘要

The aim of this paper is to propose a new hybrid data mining model based on combination of various feature selection and ensemble learning classification algorithms, in order to support decision making process. The model is built through several stages. In the first stage, initial dataset is preprocessed and apart of applying different preprocessing techniques, we paid a great attention to the feature selection. Five different feature selection algorithms were applied and their results, based on ROC and accuracy measures of logistic regression algorithm, were combined based on different voting types. We also proposed a new voting method, called if_any, that outperformed all other voting methods, as well as a single feature selection algorithm's results. In the next stage, a four different classification algorithms, including generalized linear model, support vector machine, naive Bayes and decision tree, were performed based on dataset obtained in the feature selection process. These classifiers were combined in eight different ensemble models using soft voting method. Using the real dataset, the experimental results show that hybrid model that is based on features selected by if_any voting method and ensemble GLM + DT model performs the highest performance and outperforms all other ensemble and single classifier models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蝶步韶华发布了新的文献求助10
1秒前
小菜完成签到 ,获得积分10
2秒前
jjy完成签到 ,获得积分10
3秒前
糖宝完成签到 ,获得积分10
5秒前
5秒前
jjy发布了新的文献求助10
9秒前
若雨凌风应助薛人英采纳,获得20
11秒前
zho应助李世新采纳,获得10
16秒前
蝶步韶华完成签到,获得积分10
16秒前
najcdd完成签到,获得积分20
16秒前
若尘完成签到,获得积分10
18秒前
深情安青应助钟钟采纳,获得10
19秒前
21秒前
23秒前
完美世界应助guojingjing采纳,获得10
25秒前
28秒前
勤恳元槐发布了新的文献求助10
28秒前
sdfsfds发布了新的文献求助10
29秒前
32秒前
misa完成签到 ,获得积分10
33秒前
积极丹南完成签到,获得积分20
33秒前
34秒前
Lucas应助夕夜采纳,获得10
35秒前
wanci应助sdfsfds采纳,获得10
35秒前
张宏宇发布了新的文献求助10
36秒前
绵绵冰完成签到 ,获得积分10
37秒前
guojingjing发布了新的文献求助10
37秒前
昏睡的蟠桃应助Yangyang采纳,获得200
39秒前
zho应助Billy采纳,获得10
39秒前
DD完成签到,获得积分10
44秒前
李爱国应助张宏宇采纳,获得10
44秒前
46秒前
halo完成签到,获得积分10
48秒前
科研铁人完成签到,获得积分10
50秒前
深情安青应助科研通管家采纳,获得10
50秒前
FashionBoy应助科研通管家采纳,获得10
50秒前
小二郎应助科研通管家采纳,获得10
51秒前
乐乐应助科研通管家采纳,获得10
51秒前
爆米花应助科研通管家采纳,获得10
51秒前
彭于晏应助科研通管家采纳,获得10
51秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824388
求助须知:如何正确求助?哪些是违规求助? 3366692
关于积分的说明 10442183
捐赠科研通 3086013
什么是DOI,文献DOI怎么找? 1697672
邀请新用户注册赠送积分活动 816450
科研通“疑难数据库(出版商)”最低求助积分说明 769640