A Prognostic Model Based on DBN and Diffusion Process for Degrading Bearing

深信不疑网络 人工智能 计算机科学 方位(导航) 特征提取 过程(计算) 预言 深度学习 击球时间 状态监测 数据挖掘 机器学习 模式识别(心理学) 工程类 数学 组合数学 电气工程 操作系统
作者
Changhua Hu,Hong Pei,Xiaosheng Si,Dangbo Du,Zhenan Pang,Xi Wang
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:67 (10): 8767-8777 被引量:161
标识
DOI:10.1109/tie.2019.2947839
摘要

Remaining useful life (RUL) prediction is extremely significant to ensure the safe and reliable operation for bearing suffering from the deterioration. The main focus of the RUL prediction is to accurately predict the future failure event, and thus, how to quantify the prediction uncertainty will be a major concern. However, current deep learning based RUL prediction methods are difficult to reflect the uncertainty of the RUL prediction results. Toward this end, we propose a RUL prediction model based on the deep belief network (DBN) and diffusion process (DP) in this article. The proposed method consists of two parts: feature extraction combining DBN and locally linear embedding (LLE), DP-based RUL prediction. In the first part, DBN is used to extract deep hidden features behind the monitoring signals, and then the features with higher tendency are screened as the input of LLE. The health index that can truly reflect the bearing health condition is further determined through LLE. In the second part, a health index evolving model based on DP is presented and the probability density function (PDF) of the predicted RUL is accordingly derived in the sense of the first hitting time (FHT). As such, the proposed method holds promise to improve the prediction accuracy and facilitate the prognostic uncertainty. Finally, experimental studies on the bearing degradation data and the associated comparative analysis verify the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liu22132完成签到,获得积分10
1秒前
Soda8513完成签到,获得积分10
1秒前
天天快乐应助紫色哀伤采纳,获得10
2秒前
TT完成签到,获得积分10
2秒前
小马甲应助qiqi采纳,获得10
2秒前
ling完成签到,获得积分10
3秒前
Hoyshin应助GCY采纳,获得20
4秒前
吴端完成签到,获得积分10
4秒前
11发布了新的文献求助10
4秒前
fxx完成签到,获得积分10
5秒前
5秒前
5秒前
科研通AI5应助迟暮采纳,获得10
5秒前
格拉希尔完成签到,获得积分10
7秒前
8秒前
ZsJJkk完成签到,获得积分10
8秒前
上官若男应助zwy109采纳,获得10
8秒前
9秒前
清和漾发布了新的文献求助10
9秒前
ding应助hyominhsu采纳,获得10
9秒前
思源应助侠客采纳,获得10
9秒前
9秒前
米大王发布了新的文献求助10
9秒前
烟花应助紫色哀伤采纳,获得10
10秒前
11秒前
丁宁完成签到 ,获得积分10
12秒前
刘可发布了新的文献求助10
13秒前
Hello应助醉翁采纳,获得10
14秒前
苏沐秋秋完成签到,获得积分20
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
14秒前
传奇3应助科研通管家采纳,获得30
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
斯文败类应助kkkkkkkk采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得30
14秒前
wanci应助科研通管家采纳,获得20
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709