Deep learning-based extraction of building contours for large-scale 3D urban reconstruction

计算机科学 深度学习 人工智能 光栅图形 卷积神经网络 计算机视觉 特征提取 规范化(社会学) 人工神经网络 分割 3D城市模型 语义学(计算机科学) 模式识别(心理学) 可视化 社会学 人类学 程序设计语言
作者
S. Tripodi,Liuyun Duan,Frederic Trastour,Veronique Poujade,Lionel Laurore,Yuliya Tarabalka
标识
DOI:10.1117/12.2533149
摘要

Automated 3D reconstruction of urban models from satellite images remains a challenging research topic, with many interesting outcoming applications, such as telecommunications and urban simulation. To reconstruct 3D city from stereo pairs of satellite images, semi-automatic strategies are typically applied, which are based either on procedural modeling, or on the use of both image processing and machine learning methods to infer scene geometries together with semantics. In both cases, human interaction still plays a key role, in particular for the rooftop buildings extraction. In the last decade, the use of deep learning algorithms, notably convolutional neural networks (CNNs), has shown a remarkable success for automatic image interpretation. We propose an approach using CNN architecture to automatize the procedure of building contour extraction with the final purpose to automatize 3D urban reconstruction chain and improve the quality of the generated city models. The developed algorithm consists of three steps: 1) We apply a mask-based normalization technique to the input image. 2) CNN network is applied to obtain a raster map of buildings. 3) A polygonization algorithm is designed, which processes a raster map of building to output an ensemble of building contours. We have adopted a U-Net neural network for building segmentation task. We compare the use of several U-Net architectures with the purpose to retain the best suited model. To train models, we have built a dataset of high-resolution satellite images over 15 different cities, and the corresponding building masks. The experimental results show that the proposed approach succeeds in predicting building polygons in a short time, and exhibits good generalization properties to be applied on diverse Earth areas. The developed algorithm combined with the existing LuxCarta reconstruction chain improves 3D urban scene modeling results, and thus supplies an important step towards the automatic reconstruction of 3D city scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dxm发布了新的文献求助10
刚刚
刚刚
英年早胖的96完成签到,获得积分10
刚刚
柯夫子完成签到,获得积分10
刚刚
刚刚
1秒前
Bdk完成签到 ,获得积分10
1秒前
科研通AI5应助专业中药人采纳,获得10
1秒前
SciGPT应助ruohan采纳,获得10
1秒前
小橙完成签到,获得积分20
1秒前
闲人不贤发布了新的文献求助10
1秒前
个性向秋完成签到,获得积分10
2秒前
tS717完成签到,获得积分10
2秒前
hhhhuo完成签到,获得积分10
2秒前
李爱国应助大爱仙尊采纳,获得10
2秒前
一颗小草发布了新的文献求助10
2秒前
ca发布了新的文献求助10
3秒前
li完成签到 ,获得积分10
3秒前
3秒前
na完成签到,获得积分10
3秒前
科研通AI2S应助董绮敏采纳,获得10
3秒前
wanci应助阿峰采纳,获得10
3秒前
3秒前
4秒前
4秒前
STAN发布了新的文献求助10
4秒前
浅海111完成签到,获得积分10
5秒前
田様应助幽默的煎饼采纳,获得200
5秒前
5秒前
waoller1发布了新的文献求助10
5秒前
李健的小迷弟应助潇洒焱采纳,获得10
6秒前
vadfdfb完成签到,获得积分10
6秒前
6秒前
幽默代柔发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
粗心的胜完成签到,获得积分10
7秒前
8秒前
joseneo发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4937366
求助须知:如何正确求助?哪些是违规求助? 4204462
关于积分的说明 13065767
捐赠科研通 3982143
什么是DOI,文献DOI怎么找? 2180485
邀请新用户注册赠送积分活动 1196399
关于科研通互助平台的介绍 1108406