Feature Extraction for Incomplete Data Via Low-Rank Tensor Decomposition With Feature Regularization

塔克分解 缺少数据 模式识别(心理学) 计算机科学 正规化(语言学) 特征提取 人工智能 张量(固有定义) 特征(语言学) 坐标下降 秩(图论) 数学 机器学习 张量分解 语言学 哲学 组合数学 纯数学
作者
Qiquan Shi,Yiu‐ming Cheung,Qibin Zhao,Haiping Lu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (6): 1803-1817 被引量:69
标识
DOI:10.1109/tnnls.2018.2873655
摘要

Multidimensional data (i.e., tensors) with missing entries are common in practice. Extracting features from incomplete tensors is an important yet challenging problem in many fields such as machine learning, pattern recognition, and computer vision. Although the missing entries can be recovered by tensor completion techniques, these completion methods focus only on missing data estimation instead of effective feature extraction. To the best of our knowledge, the problem of feature extraction from incomplete tensors has yet to be well explored in the literature. In this paper, we therefore tackle this problem within the unsupervised learning environment. Specifically, we incorporate low-rank tensor decomposition with feature variance maximization (TDVM) in a unified framework. Based on orthogonal Tucker and CP decompositions, we design two TDVM methods, TDVM-Tucker and TDVM-CP, to learn low-dimensional features viewing the core tensors of the Tucker model as features and viewing the weight vectors of the CP model as features. TDVM explores the relationship among data samples via maximizing feature variance and simultaneously estimates the missing entries via low-rank Tucker/CP approximation, leading to informative features extracted directly from observed entries. Furthermore, we generalize the proposed methods by formulating a general model that incorporates feature regularization into low-rank tensor approximation. In addition, we develop a joint optimization scheme to solve the proposed methods by integrating the alternating direction method of multipliers with the block coordinate descent method. Finally, we evaluate our methods on six real-world image and video data sets under a newly designed multiblock missing setting. The extracted features are evaluated in face recognition, object/action classification, and face/gait clustering. Experimental results demonstrate the superior performance of the proposed methods compared with the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
badbaby完成签到 ,获得积分10
1秒前
木木发布了新的文献求助10
2秒前
阿喵发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
人言可畏完成签到 ,获得积分10
5秒前
所所应助理li采纳,获得10
6秒前
CipherSage应助XXY采纳,获得10
6秒前
Owen应助刘大壮采纳,获得10
6秒前
英姑应助善良老头采纳,获得10
8秒前
正直水池完成签到 ,获得积分10
8秒前
典雅雁梅完成签到 ,获得积分10
9秒前
worldcloud发布了新的文献求助10
9秒前
清爽碧空完成签到 ,获得积分10
9秒前
10秒前
彭于晏应助后知后觉采纳,获得10
10秒前
理li完成签到,获得积分10
11秒前
11秒前
13秒前
邱邱完成签到,获得积分10
13秒前
CipherSage应助陶以沫采纳,获得10
13秒前
hei完成签到,获得积分20
14秒前
18秒前
12发布了新的文献求助10
18秒前
zho发布了新的文献求助10
19秒前
新念完成签到,获得积分10
19秒前
洋洋羊完成签到,获得积分20
19秒前
豆瓣酱发布了新的文献求助10
20秒前
21秒前
粗心的绾绾完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
匆匆完成签到,获得积分10
23秒前
24秒前
24秒前
26秒前
wanci应助katarinabluu采纳,获得10
26秒前
研友_VZG7GZ应助小李采纳,获得10
28秒前
28秒前
29秒前
理li发布了新的文献求助10
29秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870888
求助须知:如何正确求助?哪些是违规求助? 3412930
关于积分的说明 10682384
捐赠科研通 3137478
什么是DOI,文献DOI怎么找? 1730944
邀请新用户注册赠送积分活动 834519
科研通“疑难数据库(出版商)”最低求助积分说明 781191