Fixed effects models versus mixed effects models for clustered data: Reviewing the approaches, disentangling the differences, and making recommendations.

心理信息 纪律 数据科学 聚类分析 领域(数学) 管理科学 计算机科学 心理学 人工智能 梅德林 社会学 数学 社会科学 经济 法学 纯数学 政治学
作者
Daniel McNeish,Ken Kelley
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:24 (1): 20-35 被引量:195
标识
DOI:10.1037/met0000182
摘要

Clustered data are common in many fields. Some prominent examples of clustering are employees clustered within supervisors, students within classrooms, and clients within therapists. Many methods exist that explicitly consider the dependency introduced by a clustered data structure, but the multitude of available options has resulted in rigid disciplinary preferences. For example, those working in the psychological, organizational behavior, medical, and educational fields generally prefer mixed effects models, whereas those working in economics, behavioral finance, and strategic management generally prefer fixed effects models. However, increasingly interdisciplinary research has caused lines that separate the fields grounded in psychology and those grounded in economics to blur, leading to researchers encountering unfamiliar statistical methods commonly found in other disciplines. Persistent discipline-specific preferences can be particularly problematic because (a) each approach has certain limitations that can restrict the types of research questions that can be appropriately addressed, and (b) analyses based on the statistical modeling decisions common in one discipline can be difficult to understand for researchers trained in alternative disciplines. This can impede cross-disciplinary collaboration and limit the ability of scientists to make appropriate use of research from adjacent fields. This article discusses the differences between mixed effects and fixed effects models for clustered data, reviews each approach, and helps to identify when each approach is optimal. We then discuss the within-between specification, which blends advantageous properties of each framework into a single model. (PsycINFO Database Record (c) 2019 APA, all rights reserved).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SNOWSUMMER完成签到,获得积分10
1秒前
俭朴尔竹发布了新的文献求助10
2秒前
2秒前
Lyubb完成签到 ,获得积分10
3秒前
健壮的思枫完成签到,获得积分10
4秒前
DMY完成签到,获得积分10
5秒前
洁净的天德完成签到,获得积分10
6秒前
chris chen完成签到,获得积分0
7秒前
7秒前
遗忘完成签到,获得积分10
8秒前
隐形曼青应助lihaifeng采纳,获得10
9秒前
十七完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
十字路口完成签到 ,获得积分10
11秒前
fxy发布了新的文献求助10
12秒前
12秒前
STY完成签到,获得积分10
12秒前
库三金完成签到,获得积分10
14秒前
个o个完成签到,获得积分10
15秒前
msk完成签到 ,获得积分10
16秒前
Zhjie126完成签到,获得积分10
16秒前
我学不进去了完成签到,获得积分10
16秒前
penzer完成签到 ,获得积分10
18秒前
19秒前
科研通AI6.1应助fxy采纳,获得10
19秒前
英俊的铭应助忧心的洙采纳,获得10
22秒前
量子星尘发布了新的文献求助50
23秒前
23秒前
微笑襄完成签到 ,获得积分10
23秒前
常泽洋122完成签到,获得积分10
23秒前
lihaifeng发布了新的文献求助10
25秒前
Minazuki完成签到 ,获得积分10
25秒前
skyler完成签到,获得积分10
25秒前
26秒前
27秒前
hanqing发布了新的文献求助10
27秒前
kkk完成签到 ,获得积分10
27秒前
Orange应助瘦瘦的枫叶采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5809645
求助须知:如何正确求助?哪些是违规求助? 5885962
关于积分的说明 15525541
捐赠科研通 4934038
什么是DOI,文献DOI怎么找? 2657064
邀请新用户注册赠送积分活动 1603274
关于科研通互助平台的介绍 1558615