鉴别器
发电机(电路理论)
计算机科学
对抗制
人工智能
姿势
估计员
过程(计算)
集合(抽象数据类型)
基本事实
深度学习
沙漏
机器学习
计算机视觉
数学
功率(物理)
统计
物理
电信
历史
操作系统
考古
探测器
量子力学
程序设计语言
作者
Chia-Jung Chou,Jui-Ting Chien,Hwann-Tzong Chen
标识
DOI:10.23919/apsipa.2018.8659538
摘要
This paper presents a deep learning based approach to the problem of human pose estimation. We employ generative adversarial networks as our learning paradigm in which we set up two stacked hourglass networks with the same architecture, one as the generator and the other as the discriminator. The generator is used as a human pose estimator after the training is done. The discriminator distinguishes ground-truth heatmaps from generated ones, and back-propagates the adversarial loss to the generator. This process enables the generator to learn plausible human body configurations and is shown to be useful for improving the prediction accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI