清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning–based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses

医学 人工智能 再现性 无线电技术 放射科 核医学 计算机科学 数学 统计
作者
Jooae Choe,Sang Min Lee,Kyung‐Hyun Do,Gaeun Lee,June‐Goo Lee,Sang Min Lee,Joon Beom Seo
出处
期刊:Radiology [Radiological Society of North America]
卷期号:292 (2): 365-373 被引量:253
标识
DOI:10.1148/radiol.2019181960
摘要

Background Intratumor heterogeneity in lung cancer may influence outcomes. CT radiomics seeks to assess tumor features to provide detailed imaging features. However, CT radiomic features vary according to the reconstruction kernel used for image generation. Purpose To investigate the effect of different reconstruction kernels on radiomic features and assess whether image conversion using a convolutional neural network (CNN) could improve reproducibility of radiomic features between different kernels. Materials and Methods In this retrospective analysis, patients underwent non–contrast material–enhanced and contrast material–enhanced axial chest CT with soft kernel (B30f) and sharp kernel (B50f) reconstruction using a single CT scanner from April to June 2017. To convert different kernels without sinogram, the CNN model was developed using residual learning and an end-to-end way. Kernel-converted images were generated, from B30f to B50f and from B50f to B30f. Pulmonary nodules or masses were semiautomatically segmented and 702 radiomic features (tumor intensity, texture, and wavelet features) were extracted. Measurement variability in radiomic features was evaluated using the concordance correlation coefficient (CCC). Results A total of 104 patients were studied, including 54 women and 50 men, with pulmonary nodules or masses (mean age, 63.2 years ± 10.5). The CCC between two readers using the same kernel was 0.92, and 592 of 702 (84.3%) of the radiomic features were reproducible (CCC ≥ 0.85); using different kernels, the CCC was 0.38 and only 107 of 702 (15.2%) of the radiomic features were reliable. Texture features and wavelet features were predominantly affected by reconstruction kernel (CCC, from 0.88 to 0.61 for texture features and from 0.92 to 0.35 for wavelet features). After applying image conversion, CCC improved to 0.84 and 403 of 702 (57.4%) radiomic features were reproducible (CCC, 0.85 for texture features and 0.84 for wavelet features). Conclusion Chest CT image conversion using a convolutional neural network effectively reduced the effect of two different reconstruction kernels and may improve the reproducibility of radiomic features in pulmonary nodules or masses. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Park in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇完成签到 ,获得积分10
刚刚
LZQ完成签到,获得积分0
58秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
scm应助科研通管家采纳,获得30
1分钟前
LZQ发布了新的文献求助10
1分钟前
鲸鱼打滚完成签到 ,获得积分10
1分钟前
六一完成签到 ,获得积分10
1分钟前
doreen完成签到 ,获得积分0
1分钟前
1分钟前
LZQ发布了新的文献求助10
1分钟前
rafa完成签到 ,获得积分10
2分钟前
甜美砖家完成签到 ,获得积分10
2分钟前
CherylZhao完成签到,获得积分10
2分钟前
笑点低完成签到,获得积分10
2分钟前
JrPaleo101完成签到,获得积分10
2分钟前
李健应助seven_74521采纳,获得10
2分钟前
2分钟前
Kevin完成签到,获得积分10
2分钟前
思源应助科研通管家采纳,获得10
3分钟前
3分钟前
seven_74521发布了新的文献求助10
3分钟前
seven_74521完成签到,获得积分10
3分钟前
白菜完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
ttimmy发布了新的文献求助20
4分钟前
冷傲半邪完成签到,获得积分10
4分钟前
llll完成签到 ,获得积分10
4分钟前
火星上的之卉完成签到 ,获得积分10
4分钟前
4分钟前
ttimmy完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
宇文雨文完成签到 ,获得积分10
5分钟前
huanghe完成签到,获得积分10
5分钟前
谭平完成签到 ,获得积分10
5分钟前
顺利问玉完成签到 ,获得积分10
5分钟前
6分钟前
TOUHOUU完成签到 ,获得积分10
6分钟前
大意的皓轩完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843282
求助须知:如何正确求助?哪些是违规求助? 3385522
关于积分的说明 10540726
捐赠科研通 3106138
什么是DOI,文献DOI怎么找? 1710890
邀请新用户注册赠送积分活动 823818
科研通“疑难数据库(出版商)”最低求助积分说明 774308