Development of machine translation technology for assisting health communication: A systematic review

机器翻译 计算机科学 多样性(控制论) 系统回顾 人工智能 自然语言处理 数据科学 机器学习 梅德林 政治学 法学
作者
Kristin Dew,Anne M. Turner,Yong K. Choi,Alyssa L Bosold,Katrin Kirchhoff
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:85: 56-67 被引量:88
标识
DOI:10.1016/j.jbi.2018.07.018
摘要

To (1) characterize how machine translation (MT) is being developed to overcome language barriers in health settings; and (2) based on evaluations presented in the literature, determine which MT approaches show evidence of promise and what steps need to be taken to encourage adoption of MT technologies in health settings.We performed a systematic literature search covering 2006-2016 in major health, engineering, and computer science databases. After removing duplicates, two levels of screening identified 27 articles for full text review and analysis. Our review and qualitative analysis covered application setting, target users, underlying technology, whether MT was used in isolation or in combination with human editing, languages tested, evaluation methods, findings, and identified gaps.Of 27 studies, a majority focused on MT systems for use in clinical settings (n = 18), and eight of these involved speech-based MT systems for facilitating patient-provider communications. Text-based MT systems (n = 19) aimed at generating a range of multilingual health materials. Almost a third of all studies (n = 8) pointed to MT's potential as a starting point before human input. Studies employed a variety of human and automatic MT evaluation methods. In comparison studies, statistical machine translation (SMT) systems were more accurate than rule-based systems when large corpora were available. For a variety of systems, performance was best for translations of simple, less technical sentences and from English to Western European languages. Only one system has been fully deployed.MT is currently being developed primarily through pilot studies to improve multilingual communication in health settings and to increase access to health resources for a variety of languages. However, continued concerns about accuracy limit the deployment of MT systems in these settings. The variety of piloted systems and the lack of shared evaluation criteria will likely continue to impede adoption in health settings, where excellent accuracy and a strong evidence base are critical. Greater translation accuracy and use of standard evaluation criteria would encourage deployment of MT into health settings. For now, the literature points to using MT in health communication as an initial step to be followed by human correction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JamesPei应助甜甜采纳,获得10
2秒前
WYK发布了新的文献求助10
2秒前
852应助嘻嘻采纳,获得10
4秒前
小老板完成签到,获得积分20
4秒前
Owen应助瀼瀼采纳,获得10
5秒前
5秒前
6秒前
小枫5977完成签到 ,获得积分10
8秒前
10秒前
包容友灵完成签到,获得积分10
11秒前
gaosongsong发布了新的文献求助10
11秒前
科研通AI5应助123采纳,获得10
13秒前
妮妮完成签到,获得积分10
15秒前
Mia发布了新的文献求助10
15秒前
黎某发布了新的文献求助10
16秒前
20秒前
22秒前
Master-wang完成签到,获得积分10
22秒前
22秒前
自由思枫完成签到,获得积分10
23秒前
adazbq完成签到 ,获得积分10
23秒前
guogangyouming完成签到,获得积分10
23秒前
李健的粉丝团团长应助ZY采纳,获得10
25秒前
123发布了新的文献求助10
25秒前
是安山发布了新的文献求助10
26秒前
不摇头的向日葵完成签到,获得积分10
26秒前
棕熊熊应助石莫言采纳,获得10
27秒前
28秒前
Hello应助痴情的博超采纳,获得10
29秒前
茜你亦首歌完成签到 ,获得积分10
34秒前
英俊的铭应助123采纳,获得10
35秒前
sltg发布了新的文献求助10
35秒前
37秒前
不加糖的刘先森完成签到,获得积分10
38秒前
robust66完成签到,获得积分10
40秒前
taf123完成签到,获得积分10
40秒前
梨懵懵发布了新的文献求助20
41秒前
充电宝应助包容友灵采纳,获得10
42秒前
123完成签到,获得积分10
43秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843938
求助须知:如何正确求助?哪些是违规求助? 3386232
关于积分的说明 10544633
捐赠科研通 3107057
什么是DOI,文献DOI怎么找? 1711392
邀请新用户注册赠送积分活动 824081
科研通“疑难数据库(出版商)”最低求助积分说明 774440