Essentials of de novo protein design: Methods and applications

蛋白质设计 功能(生物学) 领域(数学) 合成生物学 蛋白质工程 计算机科学 蛋白质结构 软件工程 计算生物学 生物 数学 遗传学 生物化学 纯数学
作者
Enrique Marcos,Daniel‐Adriano Silva
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:8 (6) 被引量:49
标识
DOI:10.1002/wcms.1374
摘要

The field of de novo protein design has undergone a rapid transformation in the last decade and now enables the accurate design of protein structures with exceptional stability and in a large variety of folds not necessarily restricted to those seen in nature. Before the existence of de novo protein design, traditional strategies to engineer proteins relied exclusively on modifying existing proteins already with a similar to desired function or, at least, a suitable geometry and enough stability to tolerate mutations needed for incorporating the desired functions. De novo computational protein design, instead, allows to completely overcome this limitation by permitting the access to a virtually infinite number of protein shapes that can be suitable candidates to engineer function. Recently, we have seen the first examples of such functionalization in the form of de novo proteins custom designed to bind specific targets or small molecules with novel medical and biotechnological applications. Despite this progress, the incursion on this nascent field can be difficult due to the plethora of approaches available and their constant evolution. Here, we review the most relevant computational methods for de novo protein design with the aim of compiling a comprehensive guide for researchers embarking on this field. We illustrate most of the concepts in the view of Rosetta, which is the most extensively developed software for de novo protein design, but we highlight relevant work with other protein modeling softwares. Finally, we give an overall view of the current challenges and future opportunities in the field. This article is categorized under: Computer and Information Science > Computer Algorithms and Programming Structure and Mechanism > Computational Biochemistry and Biophysics Software > Molecular Modeling Structure and Mechanism > Molecular Structures
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助lyh2234采纳,获得10
1秒前
所所应助zm采纳,获得10
1秒前
2秒前
超级手套完成签到,获得积分10
2秒前
younger发布了新的文献求助10
5秒前
xueshanfeihu发布了新的文献求助20
5秒前
GEM发布了新的文献求助10
7秒前
Lang777完成签到 ,获得积分20
7秒前
隐形曼青应助sun采纳,获得10
8秒前
9秒前
younger完成签到,获得积分10
11秒前
sunny完成签到,获得积分10
11秒前
婷123完成签到 ,获得积分10
14秒前
14秒前
小蘑菇应助傻傻的芝采纳,获得10
14秒前
ylj1531585955发布了新的文献求助10
14秒前
16秒前
17秒前
小二郎应助一禾采纳,获得10
17秒前
18秒前
粥粥发布了新的文献求助10
20秒前
20秒前
20秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
21秒前
喵呜发布了新的文献求助10
21秒前
boom完成签到 ,获得积分10
22秒前
BOBO发布了新的文献求助10
23秒前
歼击机88发布了新的文献求助10
23秒前
25秒前
KKK研发布了新的文献求助30
26秒前
26秒前
兵哥给兵哥的求助进行了留言
28秒前
FashionBoy应助山城小丸采纳,获得10
29秒前
一禾完成签到,获得积分10
29秒前
29秒前
tong77完成签到 ,获得积分10
31秒前
pluto应助Wind采纳,获得20
31秒前
31秒前
大个应助野性的鹭洋采纳,获得10
31秒前
喵呜完成签到,获得积分10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781804
求助须知:如何正确求助?哪些是违规求助? 3327400
关于积分的说明 10230835
捐赠科研通 3042271
什么是DOI,文献DOI怎么找? 1669937
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804