光伏系统
材料科学
选矿厂
光学
光电子学
太阳能电池
棱镜
非成像光学
太阳能
跟踪(教育)
反射(计算机编程)
光圈(计算机存储器)
计算机科学
机械工程
工程类
物理
电气工程
教育学
程序设计语言
心理学
作者
Gilad Rachamim,Margarita Ritenberg,Raz Jelinek,Zeev Zalevsky
摘要
Active solar concentrators attract significant interest in photovoltaic (PV) research activity since they can substantially reduce the area of PV cells while still collecting significant amount of solar energy via large aperture collecting optics. Solar concentrators include lenses or curved mirrors directing light from the sun into a smaller spatial spot falling on the PV cell. However, the main problem of active concentrators, severely limiting their practicality, is the high cost and low angular accuracy of sun tracking apparatuses. Specifically, tracking of the sun in existing concentrators is currently done through elaborate and expensive mechanical/optical systems, which exhibit lower performance over time and require energy input by themselves. In this paper we develop a novel active solar concentrator without any mechanical tracking. We aim to accomplish this goal through designing tunable prisms via novel chemical system comprising nanoparticles (NPs), specifically gold (Au) nanorods and silica NPs, embedded in semi-rigid transparent sol-gel matrixes, and placed within an electrical field. Changing the electrical field changes the partial distribution of the NPs and yields spatial gradient of refraction index, affecting the direction of the collected optical rays and allows their directing towards the PV cell according to the movement of the sun. In the paper we present the design and the realization of the first prototype as well as its preliminary experimental characterization.
科研通智能强力驱动
Strongly Powered by AbleSci AI