Anomaly detection for medical images based on a one-class classification

人工智能 自编码 模式识别(心理学) 计算机科学 判别式 异常检测 杠杆(统计) 班级(哲学) 医学影像学 二元分类 分类器(UML) 深度学习 上下文图像分类 图像(数学) 机器学习 支持向量机
作者
Wei Qi,Bibo Shi,Joseph Y. Lo,Lawrence Carin,Yinhao Ren,Rui Hou
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 被引量:55
标识
DOI:10.1117/12.2293408
摘要

Detecting an anomaly such as a malignant tumor or a nodule from medical images including mammogram, CT or PET images is still an ongoing research problem drawing a lot of attention with applications in medical diagnosis. A conventional way to address this is to learn a discriminative model using training datasets of negative and positive samples. The learned model can be used to classify a testing sample into a positive or negative class. However, in medical applications, the high unbalance between negative and positive samples poses a difficulty for learning algorithms, as they will be biased towards the majority group, i.e., the negative one. To address this imbalanced data issue as well as leverage the huge amount of negative samples, i.e., normal medical images, we propose to learn an unsupervised model to characterize the negative class. To make the learned model more flexible and extendable for medical images of different scales, we have designed an autoencoder based on a deep neural network to characterize the negative patches decomposed from large medical images. A testing image is decomposed into patches and then fed into the learned autoencoder to reconstruct these patches themselves. The reconstruction error of one patch is used to classify this patch into a binary class, i.e., a positive or a negative one, leading to a one-class classifier. The positive patches highlight the suspicious areas containing anomalies in a large medical image. The proposed method has been tested on InBreast dataset and achieves an AUC of 0.84. The main contribution of our work can be summarized as follows. 1) The proposed one-class learning requires only data from one class, i.e., the negative data; 2) The patch-based learning makes the proposed method scalable to images of different sizes and helps avoid the large scale problem for medical images; 3) The training of the proposed deep convolutional neural network (DCNN) based auto-encoder is fast and stable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的灵竹完成签到,获得积分10
1秒前
2秒前
文文完成签到,获得积分20
2秒前
大腚疯猪应助科研通管家采纳,获得30
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
所所应助分子筛催化采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
木头人应助科研通管家采纳,获得20
4秒前
4秒前
沈璃发布了新的文献求助10
6秒前
不敢自称科研人完成签到,获得积分10
15秒前
完美世界应助疯狂的夏天采纳,获得10
16秒前
李健应助落后醉易采纳,获得10
17秒前
英俊的铭应助YQ采纳,获得10
17秒前
SciGPT应助sinlar采纳,获得10
18秒前
核桃完成签到,获得积分10
18秒前
洁净艳一完成签到,获得积分10
20秒前
wanci应助奂锐123采纳,获得10
22秒前
djdh完成签到 ,获得积分10
22秒前
顺心凡之完成签到,获得积分10
23秒前
洁净艳一发布了新的文献求助80
24秒前
Werner完成签到 ,获得积分10
24秒前
28秒前
chaoshen完成签到,获得积分10
30秒前
赵懂发布了新的文献求助10
31秒前
洋洋完成签到 ,获得积分10
32秒前
DINGXH完成签到,获得积分10
32秒前
Ann关注了科研通微信公众号
33秒前
34秒前
35秒前
成熟稳重痴情完成签到,获得积分10
36秒前
37秒前
37秒前
研友_VZG7GZ应助疯狂的夏天采纳,获得10
39秒前
梅溪湖的提词器完成签到,获得积分10
39秒前
H499给石建霏的求助进行了留言
39秒前
39秒前
呼呼啦啦完成签到,获得积分10
40秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332370
捐赠科研通 3063467
什么是DOI,文献DOI怎么找? 1681747
邀请新用户注册赠送积分活动 807681
科研通“疑难数据库(出版商)”最低求助积分说明 763864