Multi-Level Attention Network for Retinal Vessel Segmentation

计算机科学 人工智能 分割 特征(语言学) 辍学(神经网络) 一般化 图像分割 路径(计算) 频道(广播) 块(置换群论) 模式识别(心理学) 卷积(计算机科学) 计算机视觉 卷积神经网络 眼底(子宫) 人工神经网络 机器学习 数学分析 哲学 眼科 语言学 数学 程序设计语言 计算机网络 医学 几何学
作者
Yuchen Yuan,Lei Zhang,Lituan Wang,Haiying Huang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 312-323 被引量:77
标识
DOI:10.1109/jbhi.2021.3089201
摘要

Automatic vessel segmentation in the fundus images plays an important role in the screening, diagnosis, treatment, and evaluation of various cardiovascular and ophthalmologic diseases. However, due to the limited well-annotated data, varying size of vessels, and intricate vessel structures, retinal vessel segmentation has become a long-standing challenge. In this paper, a novel deep learning model called AACA-MLA-D-UNet is proposed to fully utilize the low-level detailed information and the complementary information encoded in different layers to accurately distinguish the vessels from the background with low model complexity. The architecture of the proposed model is based on U-Net, and the dropout dense block is proposed to preserve maximum vessel information between convolution layers and mitigate the over-fitting problem. The adaptive atrous channel attention module is embedded in the contracting path to sort the importance of each feature channel automatically. After that, the multi-level attention module is proposed to integrate the multi-level features extracted from the expanding path, and use them to refine the features at each individual layer via attention mechanism. The proposed method has been validated on the three publicly available databases, i.e. the DRIVE, STARE, and CHASE _ DB1. The experimental results demonstrate that the proposed method can achieve better or comparable performance on retinal vessel segmentation with lower model complexity. Furthermore, the proposed method can also deal with some challenging cases and has strong generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静的初阳完成签到,获得积分10
刚刚
awslsdl完成签到,获得积分10
1秒前
陈玖攸发布了新的文献求助10
1秒前
zy3637发布了新的文献求助10
1秒前
wanci应助认真学习采纳,获得10
1秒前
天天天蓝完成签到,获得积分10
2秒前
刘果果发布了新的文献求助10
2秒前
完美世界应助Darlene采纳,获得10
2秒前
2秒前
3秒前
科研通AI5应助烤鱼片采纳,获得10
3秒前
科研助手6应助DZQ采纳,获得10
3秒前
可爱的函函应助kkt采纳,获得10
4秒前
见雨鱼发布了新的文献求助30
4秒前
xxx发布了新的文献求助10
4秒前
zz关闭了zz文献求助
5秒前
JCP完成签到,获得积分10
6秒前
科研通AI5应助十字勋章采纳,获得10
7秒前
7秒前
阿南发布了新的文献求助10
8秒前
WangYanjie发布了新的文献求助10
8秒前
8秒前
漠池完成签到,获得积分10
9秒前
chenzi发布了新的文献求助10
10秒前
111222333完成签到 ,获得积分10
10秒前
11秒前
故意的小熊猫完成签到 ,获得积分10
11秒前
11秒前
爱学习完成签到,获得积分10
11秒前
13秒前
13秒前
13秒前
刘cl发布了新的文献求助30
13秒前
十三应助yang采纳,获得20
14秒前
awslsdl发布了新的文献求助10
14秒前
14秒前
杭城发布了新的文献求助10
14秒前
深海鳕鱼完成签到,获得积分10
15秒前
斯文败类应助liunshi采纳,获得10
15秒前
爱学习发布了新的文献求助10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793552
求助须知:如何正确求助?哪些是违规求助? 3338512
关于积分的说明 10289946
捐赠科研通 3054952
什么是DOI,文献DOI怎么找? 1676225
邀请新用户注册赠送积分活动 804261
科研通“疑难数据库(出版商)”最低求助积分说明 761812