Integrated 3D printed microfluidic circuitry and soft microrobotic actuators via in situ direct laser writing

微流控 软机器人 执行机构 纳米技术 3D打印 材料科学 流体学 软光刻 制作 机械工程 光电子学 电气工程 工程类 医学 病理 替代医学
作者
Abdullah T. Alsharhan,Olivia M. Young,Xin Xu,Anthony J. Stair,Ryan D. Sochol
出处
期刊:Journal of Micromechanics and Microengineering [IOP Publishing]
卷期号:31 (4): 044001-044001 被引量:24
标识
DOI:10.1088/1361-6439/abec1c
摘要

Abstract Over the past two decades, researchers have advanced and employed integrated microfluidic circuitry to enable a wide range of chemical and biological ‘lab-on-a-chip’ capabilities. Yet in recent years, a wholly different field, soft robotics, has begun harnessing microfluidic circuitry as a promising means to enhance soft robot autonomy. Unfortunately, key challenges associated with not only the fabrication of microfluidic circuitry, but also its integration with soft robotic systems represent critical barriers to progress. To overcome such issues, here we present a strategy that leverages ‘ in situ direct laser writing ( is DLW)’—a submicron-scale additive manufacturing (or ‘three-dimensional (3D) printing’) approach developed previously by our group—to fabricate microfluidic circuit elements and soft microrobotic actuators directly inside of enclosed microchannels. In addition, we introduce ‘normally closed’ microfluidic transistors that comprise free-floating sealing discs designed to block source-to-drain fluid flow until the application of a target gate pressure. As an exemplar, we printed microfluidic transistors with distinct gate activation properties as well as identical soft microgrippers downstream of each drain within 40 µ m-tall microchannels. Experimental results for a source pressure of 100 kPa revealed that microgripper deformation was prevented in the absence of a gate input; however, increasing the gate pressure to 300 kPa induced actuation of one set of microgrippers, while a further increase to 400 kPa led to both sets of microgrippers actuating successfully. These results suggest that the presented is DLW-based strategy for manufacturing and integrating 3D microfluidic circuit elements and microrobotic end effectors could offer unique potential for emerging soft robotic applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇哦呀发布了新的文献求助10
刚刚
饼干吃土豆完成签到,获得积分10
1秒前
落后的盼芙应助机智洋采纳,获得10
1秒前
Galen发布了新的文献求助10
1秒前
吴祖恒发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
高青青发布了新的文献求助10
1秒前
2秒前
卢卡发布了新的文献求助10
2秒前
2秒前
科研通AI6.1应助岸然采纳,获得30
3秒前
5866发布了新的文献求助10
3秒前
小邓完成签到,获得积分10
3秒前
4秒前
田様应助123456采纳,获得30
4秒前
yu完成签到,获得积分10
4秒前
弗洛伊德完成签到 ,获得积分10
5秒前
抹茶泡泡发布了新的文献求助50
6秒前
HMethod完成签到 ,获得积分10
6秒前
zhangnan发布了新的文献求助10
7秒前
7秒前
7秒前
小民完成签到,获得积分10
8秒前
8秒前
打烊完成签到,获得积分10
8秒前
shukq发布了新的文献求助10
9秒前
轨迹应助long采纳,获得50
9秒前
zz发布了新的文献求助50
10秒前
genge发布了新的文献求助10
10秒前
科研渣渣发布了新的文献求助10
11秒前
ding应助研友_LpvQlZ采纳,获得10
11秒前
11秒前
123发布了新的文献求助30
11秒前
852应助云为翳采纳,获得10
11秒前
希望天下0贩的0应助Darsine采纳,获得10
12秒前
怕黑一斩完成签到,获得积分20
12秒前
清风发布了新的文献求助10
12秒前
13秒前
安详苠发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785018
求助须知:如何正确求助?哪些是违规求助? 5684842
关于积分的说明 15466115
捐赠科研通 4913942
什么是DOI,文献DOI怎么找? 2645068
邀请新用户注册赠送积分活动 1592871
关于科研通互助平台的介绍 1547270