运动规划
椭球体
数学优化
启发式
路径(计算)
采样(信号处理)
计算机科学
数学
人工智能
机器人
物理
滤波器(信号处理)
计算机视觉
程序设计语言
天文
作者
Jonathan D. Gammell,Siddhartha S Srinivasa,Timothy D. Barfoot
标识
DOI:10.1109/iros.2014.6942976
摘要
Rapidly-exploring random trees (RRTs) are popular in motion planning because they find solutions efficiently to single-query problems. Optimal RRTs (RRT*s) extend RRTs to the problem of finding the optimal solution, but in doing so asymptotically find the optimal path from the initial state to every state in the planning domain. This behaviour is not only inefficient but also inconsistent with their single-query nature.
科研通智能强力驱动
Strongly Powered by AbleSci AI