The Florida Scoring System for stratifying children with suspected Sjögren's disease: a cross-sectional machine learning study

医学 队列 潜在类模型 横断面研究 儿科 疾病 内科学 机器学习 病理 计算机科学
作者
Wenjie Zeng,Akaluck Thatayatikom,Nicole Winn,Tyler Lovelace,Indraneel Bhattacharyya,Thomas Schrepfer,Ankit Shah,Renato Gonik,Panayiotis V. Benos,Seunghee Cha
出处
期刊:The Lancet Rheumatology [Elsevier BV]
卷期号:6 (5): e279-e290 被引量:2
标识
DOI:10.1016/s2665-9913(24)00059-6
摘要

Background Childhood Sjögren's disease is a rare, underdiagnosed, and poorly-understood condition. By integrating machine learning models on a paediatric cohort in the USA, we aimed to develop a novel system (the Florida Scoring System) for stratifying symptomatic paediatric patients with suspected Sjögren's disease. Methods This cross-sectional study was done in symptomatic patients who visited the Department of Pediatric Rheumatology at the University of Florida, FL, USA. Eligible patients were younger than 18 years or had symptom onset before 18 years of age. Patients with confirmed diagnosis of another autoimmune condition or infection with a clear aetiological microorganism were excluded. Eligible patients underwent comprehensive examinations to rule out or diagnose childhood Sjögren's disease. We used latent class analysis with clinical and laboratory variables to detect heterogeneous patient classes. Machine learning models, including random forest, gradient-boosted decision tree, partial least square discriminatory analysis, least absolute shrinkage and selection operator-penalised ordinal regression, artificial neural network, and super learner were used to predict patient classes and rank the importance of variables. Causal graph learning selected key features to build the final Florida Scoring System. The predictors for all models were the clinical and laboratory variables and the outcome was the definition of patient classes. Findings Between Jan 16, 2018, and April 28, 2022, we screened 448 patients for inclusion. After excluding 205 patients due to symptom onset later than 18 years of age, we recruited 243 patients into our cohort. 26 patients were excluded because of confirmed diagnosis of a disorder other than Sjögren's disease, and 217 patients were included in the final analysis. Median age at diagnosis was 15 years (IQR 11–17). 155 (72%) of 216 patients were female and 61 (28%) were male, 167 (79%) of 212 were White, and 20 (9%) of 213 were Hispanic, Latino, or Spanish. The latent class analysis identified three distinct patient classes: class I (dryness dominant with positive tests, n=27), class II (high symptoms with negative tests, n=98), and class III (low symptoms with negative tests, n=92). Machine learning models accurately predicted patient class and ranked variable importance consistently. The causal graphical model discovered key features for constructing the Florida Scoring System. Interpretation The Florida Scoring System is a paediatrician-friendly tool that can be used to assist classification and long-term monitoring of suspected childhood Sjögren's disease. The resulting stratification has important implications for clinical management, trial design, and pathobiological research. We found a highly symptomatic patient group with negative serology and diagnostic profiles, which warrants clinical attention. We further revealed that salivary gland ultrasonography can be a non-invasive alternative to minor salivary gland biopsy in children. The Florida Scoring System requires validation in larger prospective paediatric cohorts. Funding National Institute of Dental and Craniofacial Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Heart, Lung, and Blood Institute, and Sjögren's Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
biozy完成签到,获得积分10
刚刚
小王完成签到,获得积分10
1秒前
畅快的饼干完成签到 ,获得积分10
2秒前
静静想静静地静静完成签到 ,获得积分10
3秒前
Hello应助红鲤采纳,获得10
4秒前
强壮的美女完成签到,获得积分10
4秒前
5秒前
末世发布了新的文献求助10
6秒前
欢喜的跳跳糖完成签到 ,获得积分10
7秒前
UUU完成签到 ,获得积分10
7秒前
追寻的问玉完成签到 ,获得积分10
8秒前
dingzj0828完成签到,获得积分10
9秒前
10秒前
gzgljh完成签到,获得积分10
10秒前
11秒前
胖宏完成签到 ,获得积分10
12秒前
林谷雨完成签到 ,获得积分10
12秒前
cc完成签到,获得积分10
13秒前
沫晨完成签到,获得积分10
13秒前
天涯倦客完成签到,获得积分10
14秒前
dingzj0828发布了新的文献求助10
15秒前
FB完成签到,获得积分10
15秒前
15秒前
16秒前
阳光的雁玉完成签到 ,获得积分10
17秒前
zzl1111发布了新的文献求助10
19秒前
凊嗏淡墨完成签到,获得积分10
21秒前
nzxnzx发布了新的文献求助10
21秒前
非对称转录完成签到,获得积分10
22秒前
CodeCraft应助小白采纳,获得10
23秒前
23秒前
ZhuJY完成签到,获得积分10
23秒前
23秒前
机智的乌完成签到 ,获得积分10
23秒前
24秒前
无心的闭月完成签到,获得积分10
24秒前
jinyu完成签到,获得积分10
25秒前
小虫虫应助1111采纳,获得10
26秒前
科研顺利完成签到,获得积分10
26秒前
sunyz应助健忘绮南采纳,获得20
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815941
求助须知:如何正确求助?哪些是违规求助? 3359450
关于积分的说明 10402612
捐赠科研通 3077262
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813693
科研通“疑难数据库(出版商)”最低求助积分说明 767743