Application of machine learning to analyze ozone sensitivity to influencing factors: A case study in Nanjing, China

环境科学 臭氧 氮氧化物 气象学 灵敏度(控制系统) 梯度升压 污染 地面臭氧 大气科学 计算机科学 化学 机器学习 工程类 随机森林 地理 燃烧 生态学 电子工程 有机化学 地质学 生物
作者
Chenwu Zhang,Xie Yu-min,Min Shao,Qin’geng Wang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:929: 172544-172544 被引量:2
标识
DOI:10.1016/j.scitotenv.2024.172544
摘要

Ground-level ozone (O3) has been an emerging concern in China. Due to its complicated formation mechanisms, understanding the effects of influencing factors is critical for making effective efforts on the pollution control. This study aims to present and demonstrate the practicality of a data-driven technique that applies a machine learning (ML) model coupled with the SHapley Additive exPlanations (SHAP) approach in O3 simulation and sensitivity analysis. Based on hourly measured concentrations of O3 and its major precursors, as well as meteorological factors in a northern area of Nanjing, China, a Light Gradient Boosting Machine (LightGBM) model was established to simulate O3 concentrations in different seasons, and the SHAP approach was applied to conduct in-depth analysis on the impacts of influencing factors on O3 formation. The results indicated a reliable performance of the ML model in simulating O3 concentrations, with the coefficient of determination (R2) between the measured and simulated larger than 0.80, and the impacts of influencing factors were reasonably evaluated by the SHAP approach on both seasonal and diurnal time scales. It was found that although volatile organic compounds (VOCs) and nitrogen oxides (NOx), as well as temperature and relative humidity, were generally the main influencing factors, their sensitivities to O3 formation varied significantly in different seasons and with time of the day. This study suggests that the data-driven ML model is a practicable technique and may act as an alternative way to perform mechanism analysis to some extent, and has immense potential to be applied in both problem research and decision-making for air pollution control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼流沙发布了新的文献求助10
1秒前
圈圈发布了新的文献求助10
2秒前
joleisalau发布了新的文献求助10
2秒前
3秒前
5秒前
joleisalau完成签到,获得积分10
8秒前
今天只做一件事应助mao采纳,获得10
9秒前
Bonnienuit发布了新的文献求助10
10秒前
12秒前
飞逝的快乐时光完成签到 ,获得积分10
14秒前
Hello应助细腻的山水采纳,获得10
15秒前
16秒前
完美世界应助kingcoming采纳,获得10
23秒前
Solitude完成签到,获得积分10
23秒前
25秒前
良璞发布了新的文献求助10
29秒前
wangli发布了新的文献求助10
29秒前
小美完成签到,获得积分10
31秒前
32秒前
pluto应助yang采纳,获得10
34秒前
kingcoming发布了新的文献求助10
35秒前
龙王爱吃糖完成签到 ,获得积分10
36秒前
38秒前
在水一方应助ZZW采纳,获得10
38秒前
不去明知山完成签到 ,获得积分10
43秒前
pluto应助Wlin采纳,获得20
44秒前
45秒前
魏逸茜发布了新的文献求助10
45秒前
xun完成签到,获得积分10
46秒前
朵拉是个大可爱完成签到 ,获得积分10
46秒前
圈圈发布了新的文献求助10
46秒前
51秒前
SciGPT应助jim采纳,获得30
51秒前
科目三应助视野胤采纳,获得10
58秒前
晓鸭的平凡世界完成签到,获得积分10
1分钟前
myheng完成签到 ,获得积分10
1分钟前
MZT完成签到,获得积分10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780526
求助须知:如何正确求助?哪些是违规求助? 3326007
关于积分的说明 10225152
捐赠科研通 3041089
什么是DOI,文献DOI怎么找? 1669166
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669