Optimizing Traffic Flow With Reinforcement Learning: A Study on Traffic Light Management

强化学习 流量(计算机网络) 交通信号灯 运输工程 计算机科学 模拟 工程类 人工智能 计算机网络 实时计算
作者
Amal Merbah,Jalel Ben‐Othman
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:2
标识
DOI:10.1109/tits.2024.3351471
摘要

The non-adaptive management of traffic lights has proven inefficient for a number of drawbacks. They mainly impinge on CO2 emissions, fuel consumption, traffic waiting time, and heavy traffic. In this study, we propose a traffic signal control system that combines the accuracy of mathematical modeling with the real-time and adaptation features of deep learning (DL) by basing the DL configuration on a mathematical model of the interaction between the environment and the intersection as a Markov decision process (MDP) while taking structural and safety issues into consideration. As a resolution method, we suggest in this study a policy iteration (PI) method, which gives the best policy to follow so as to choose the action that determines the phase duration. These phases minimize the reward, which is the average waiting time (AWT) for all vehicles crossing the intersection. The PI has demonstrated greater efficiency compared to management systems based on fixed durations in various traffic situations. Instead of triggering the PI system for each new situation encountered and minimizing the processing time, the PI will act as a learning method for the DL program. We build a learning database by storing several situations represented by the variables: input flow, latest switching dates, output flows, traffic light states, and queue lengths, with their respective solutions returned by PI as the policy for selecting next switching dates. Due to this configuration, DL has been able to respond optimally and in real-time to different levels of throughput: low, medium, and high.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
luo完成签到 ,获得积分10
3秒前
4秒前
6秒前
9秒前
尘染完成签到 ,获得积分10
15秒前
19秒前
wanna完成签到,获得积分10
19秒前
24秒前
海派Hi完成签到 ,获得积分10
25秒前
王南晰完成签到 ,获得积分10
25秒前
qianci2009完成签到,获得积分10
26秒前
受伤问凝完成签到 ,获得积分10
34秒前
36秒前
小孙孙完成签到 ,获得积分10
36秒前
41秒前
44秒前
xxiao完成签到 ,获得积分10
44秒前
tmobiusx完成签到,获得积分10
53秒前
花花完成签到,获得积分10
1分钟前
任性翠安完成签到 ,获得积分10
1分钟前
时尚的冰棍儿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Lea完成签到,获得积分10
1分钟前
南风完成签到 ,获得积分10
1分钟前
Lea发布了新的文献求助10
1分钟前
nine2652完成签到 ,获得积分10
1分钟前
ycool完成签到 ,获得积分10
1分钟前
独特的高山完成签到 ,获得积分10
1分钟前
荼白完成签到 ,获得积分10
1分钟前
smz完成签到 ,获得积分10
1分钟前
火星上书琴完成签到 ,获得积分10
1分钟前
轻歌水越完成签到 ,获得积分10
1分钟前
1分钟前
传奇完成签到 ,获得积分10
1分钟前
QQ糖完成签到 ,获得积分10
1分钟前
2分钟前
lilylwy完成签到 ,获得积分0
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780879
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226694
捐赠科研通 3041539
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758732