亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A machine learning constitutive model for plasticity and strain hardening of polycrystalline metals based on data from micromechanical simulations

本构方程 可塑性 材料科学 硬化(计算) 应变硬化指数 微晶 微观力学 拉伤 冶金 复合材料 结构工程 机械工程 有限元法 工程类 内科学 复合数 医学 图层(电子)
作者
Ronak Shoghi,Alexander Hartmaier
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:5 (2): 025008-025008 被引量:11
标识
DOI:10.1088/2632-2153/ad379e
摘要

Abstract Machine learning (ML) methods have emerged as promising tools for generating constitutive models directly from mechanical data. Constitutive models are fundamental in describing and predicting the mechanical behavior of materials under arbitrary loading conditions. In recent approaches, the yield function, central to constitutive models, has been formulated in a data-oriented manner using ML. Many ML approaches have primarily focused on initial yielding, and the effect of strain hardening has not been widely considered. However, taking strain hardening into account is crucial for accurately describing the deformation behavior of polycrystalline metals. To address this problem, the present study introduces an ML-based yield function formulated as a support vector classification model, which encompasses strain hardening. This function was trained using a 12-dimensional feature vector that includes stress and plastic strain components resulting from crystal plasticity finite element method (CPFEM) simulations on a 3-dimensional RVE with 343 grains with a random crystallographic texture. These simulations were carried out to mimic multi-axial mechanical testing of the polycrystal under proportional loading in 300 different directions, which were selected to ensure proper coverage of the full stress space. The training data were directly taken from the stress–strain results obtained for the 300 multi-axial load cases. It is shown that the ML yield function trained on these data describes not only the initial yield behavior but also the flow stresses in the plastic regime with a very high accuracy and robustness. The workflow introduced in this work to generate synthetic mechanical data based on realistic CPFEM simulations and to train an ML yield function, including strain hardening, will open new possibilities in microstructure-sensitive materials modeling and thus pave the way for obtaining digital material twins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
曦耀发布了新的文献求助20
26秒前
黄嘉慧完成签到 ,获得积分10
41秒前
MGraceLi_sci完成签到,获得积分10
50秒前
所所应助zhanghua采纳,获得10
56秒前
1分钟前
兆兆完成签到 ,获得积分10
1分钟前
zhanghua发布了新的文献求助10
1分钟前
1分钟前
小马甲应助dddhhhqqq采纳,获得10
1分钟前
zhanghua完成签到,获得积分10
1分钟前
1分钟前
Yuan完成签到,获得积分10
1分钟前
sci发布了新的文献求助10
1分钟前
虚心涵山完成签到 ,获得积分10
1分钟前
sci完成签到,获得积分10
1分钟前
1分钟前
1分钟前
dddhhhqqq发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
狗头发布了新的文献求助20
2分钟前
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
2分钟前
单薄咖啡豆完成签到 ,获得积分10
3分钟前
alanbike完成签到,获得积分10
3分钟前
3分钟前
3分钟前
wynne313完成签到 ,获得积分10
3分钟前
3分钟前
健壮灰狼发布了新的文献求助10
4分钟前
wearelulu完成签到,获得积分10
4分钟前
荒野牧人发布了新的文献求助200
4分钟前
PYF完成签到,获得积分10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
吃的饱饱呀完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534231
求助须知:如何正确求助?哪些是违规求助? 4622287
关于积分的说明 14582414
捐赠科研通 4562518
什么是DOI,文献DOI怎么找? 2500193
邀请新用户注册赠送积分活动 1479774
关于科研通互助平台的介绍 1450914