A Reliable and Repeatable Model for Predicting Microvascular Invasion in Patients With Hepatocellular Carcinoma

肝细胞癌 接收机工作特性 放射科 队列 曲线下面积 多元分析 再现性 磁共振成像 多元统计 医学 金标准(测试) 试验预测值 核医学 内科学 机器学习 统计 计算机科学 数学
作者
Yunjing Tang,Xinhui Lu,Lijuan Liu,Xiangyang Huang,Ling Lin,Yixin Lü,Chuanji Zhou,Shaolv Lai,Ningbin Luo
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (8): 1521-1527 被引量:8
标识
DOI:10.1016/j.acra.2023.02.035
摘要

The reproducibility of imaging models for predicting microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) remains questionable due to inconsistent interpretation of image signs. Our aim was to screen for high-consensus MRI features to develop a repeatable model for predicting MVI.We included 219 patients with HCC who underwent surgical resection, and patients were divided into a training cohort (n = 145) and a validation cohort (n = 74). Morphological characteristics, signal features on hepatobiliary phases, and dynamic enhancement patterns were qualitatively interobserver evaluated. Interobserver agreement was assessed using Cohen's κ for selecting features with high interobserver agreement. Risk factors that were significant in stepwise multivariate analysis and that could be measured with good interobserver agreement were used to construct a predictive model, which was assessed in the validation cohort. The diagnostic performance of the model was evaluated based on area under the receiver operating characteristic curve (AUC).Multivariate analysis identified nonsmooth tumor margin, absence of radiologic capsule, and intratumoral artery as independent risk factors of MVI. These MRI-based features showed good or nearly perfect interobserver agreement between radiologists (κ > 0.6). The predictive model predicted MVI well in the training (AUC 0.734) and validation cohorts (AUC 0.759) and fitted well to calibration curves.MRI features included nonsmooth tumor margin, absence of radiologic capsule, and intratumoral artery that can be assessed with high interobserver agreement can predict MVI in HCC patients. The predictive model described here may be useful to radiologists, regardless of experience level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
711完成签到,获得积分10
2秒前
小秦秦完成签到 ,获得积分10
2秒前
3秒前
4秒前
稗子酿的酒完成签到,获得积分10
4秒前
5秒前
轻松初阳完成签到 ,获得积分10
5秒前
7秒前
cyw完成签到,获得积分10
8秒前
8秒前
眯眯眼的枕头完成签到,获得积分10
8秒前
liang发布了新的文献求助10
9秒前
dorianao发布了新的文献求助10
9秒前
fei完成签到,获得积分10
10秒前
夏天应助东方雨季采纳,获得30
11秒前
所所应助江三村采纳,获得10
11秒前
专注的香萱完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
15秒前
包容友儿完成签到,获得积分10
15秒前
cowboy发布了新的文献求助10
17秒前
费老五完成签到 ,获得积分10
17秒前
TG_FY完成签到,获得积分10
18秒前
18秒前
知性的土豆完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
sl发布了新的文献求助10
21秒前
可靠幼旋完成签到,获得积分10
22秒前
打打应助皮皮鲁采纳,获得10
23秒前
科研顺利完成签到 ,获得积分10
23秒前
江宜完成签到 ,获得积分10
24秒前
plumage发布了新的文献求助10
24秒前
ZYN完成签到,获得积分10
25秒前
今后应助day_on采纳,获得10
27秒前
赘婿应助科研通管家采纳,获得10
27秒前
27秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902090
求助须知:如何正确求助?哪些是违规求助? 3446813
关于积分的说明 10845895
捐赠科研通 3171990
什么是DOI,文献DOI怎么找? 1752529
邀请新用户注册赠送积分活动 847316
科研通“疑难数据库(出版商)”最低求助积分说明 789871