Natural Language Processing in a Clinical Decision Support System for the Identification of Venous Thromboembolism: Algorithm Development and Validation

医学 接收机工作特性 肺栓塞 临床决策支持系统 算法 深静脉 病历 静脉血栓形成 队列 曲线下面积 电子健康档案 机器学习 血栓形成 儿科 人工智能 医疗保健 内科学 决策支持系统 经济 经济增长 计算机科学
作者
Zhigeng Jin,Hui Zhang,Mei-Hui Tai,Ying Yang,Yuan Yao,Yutao Guo
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e43153-e43153 被引量:12
标识
DOI:10.2196/43153
摘要

Background It remains unknown whether capturing data from electronic health records (EHRs) using natural language processing (NLP) can improve venous thromboembolism (VTE) detection in different clinical settings. Objective The aim of this study was to validate the NLP algorithm in a clinical decision support system for VTE risk assessment and integrated care (DeVTEcare) to identify VTEs from EHRs. Methods All inpatients aged ≥18 years in the Sixth Medical Center of the Chinese People's Liberation Army General Hospital from January 1 to December 31, 2021, were included as the validation cohort. The sensitivity, specificity, positive and negative likelihood ratios (LR+ and LR–, respectively), area under the receiver operating characteristic curve (AUC), and F1-scores along with their 95% CIs were used to analyze the performance of the NLP tool, with manual review of medical records as the reference standard for detecting deep vein thrombosis (DVT) and pulmonary embolism (PE). The primary end point was the performance of the NLP approach embedded into the EHR for VTE identification. The secondary end points were the performances to identify VTE among different hospital departments with different VTE risks. Subgroup analyses were performed among age, sex, and the study season. Results Among 30,152 patients (median age 56 [IQR 41-67] years; 14,247/30,152, 47.3% females), the prevalence of VTE, PE, and DVT was 2.1% (626/30,152), 0.6% (177/30,152), and 1.8% (532/30,152), respectively. The sensitivity, specificity, LR+, LR–, AUC, and F1-score of NLP-facilitated VTE detection were 89.9% (95% CI 87.3%-92.2%), 99.8% (95% CI 99.8%-99.9%), 483 (95% CI 370-629), 0.10 (95% CI 0.08-0.13), 0.95 (95% CI 0.94-0.96), and 0.90 (95% CI 0.90-0.91), respectively. Among departments of surgery, internal medicine, and intensive care units, the highest specificity (100% vs 99.7% vs 98.8%, respectively), LR+ (3202 vs 321 vs 77, respectively), and F1-score (0.95 vs 0.89 vs 0.92, respectively) were in the surgery department (all P<.001). Among low, intermediate, and high VTE risks in hospital departments, the low-risk department had the highest AUC (1.00 vs 0.94 vs 0.96, respectively) and F1-score (0.97 vs 0.90 vs 0.90, respectively) as well as the lowest LR– (0.00 vs 0.13 vs 0.08, respectively) (DeLong test for AUC; all P<.001). Subgroup analysis of the age, sex, and season demonstrated consistently good performance of VTE detection with >87% sensitivity and specificity and >89% AUC and F1-score. The NLP algorithm performed better among patients aged ≤65 years than among those aged >65 years (F1-score 0.93 vs 0.89, respectively; P<.001). Conclusions The NLP algorithm in our DeVTEcare identified VTE well across different clinical settings, especially in patients in surgery units, departments with low-risk VTE, and patients aged ≤65 years. This algorithm can help to inform accurate in-hospital VTE rates and enhance risk-classified VTE integrated care in future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhang完成签到,获得积分10
刚刚
俭朴的世界完成签到 ,获得积分10
1秒前
0001完成签到,获得积分10
2秒前
丙队长完成签到,获得积分10
3秒前
蒙蒙完成签到,获得积分10
3秒前
明亮依琴完成签到,获得积分10
3秒前
朴实的薯片完成签到 ,获得积分10
4秒前
zheng完成签到 ,获得积分10
4秒前
彭于晏应助zz采纳,获得10
5秒前
一人完成签到,获得积分10
6秒前
ysssbq完成签到,获得积分10
6秒前
夏寄风完成签到,获得积分10
6秒前
机灵石头完成签到,获得积分10
7秒前
10秒前
10秒前
ye完成签到,获得积分10
11秒前
JackW完成签到,获得积分10
11秒前
grace发布了新的文献求助10
14秒前
LMY完成签到,获得积分10
15秒前
hhhhhha完成签到,获得积分10
16秒前
幽默的太阳完成签到 ,获得积分10
17秒前
啵妞完成签到 ,获得积分10
18秒前
务实的胡萝卜完成签到 ,获得积分10
18秒前
冷傲的帽子完成签到 ,获得积分10
19秒前
19秒前
19秒前
Akim应助科研通管家采纳,获得50
19秒前
田様应助科研通管家采纳,获得10
19秒前
AHA完成签到,获得积分10
20秒前
21秒前
LSS完成签到,获得积分10
21秒前
害羞的天真完成签到 ,获得积分10
23秒前
浅音发布了新的文献求助10
23秒前
奕青完成签到,获得积分10
24秒前
旋转门发布了新的文献求助10
25秒前
贺光萌完成签到 ,获得积分10
26秒前
502s完成签到,获得积分10
26秒前
哈哈哈kk完成签到,获得积分10
28秒前
Capital完成签到,获得积分10
28秒前
jiangjiang完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256478
求助须知:如何正确求助?哪些是违规求助? 4418730
关于积分的说明 13753082
捐赠科研通 4291913
什么是DOI,文献DOI怎么找? 2355182
邀请新用户注册赠送积分活动 1351622
关于科研通互助平台的介绍 1312330