111. pVACsplice: Predicting neoantigens from tumor-specific alternative splicing events derived from regulatory mutations

计算生物学 生物 免疫原性 RNA剪接 主要组织相容性复合体 外显子组 选择性拼接 癌症 突变 遗传学 免疫系统 外显子组测序 核糖核酸 基因 外显子
作者
Megan M. Richters,Kelsy C. Cotto,Susanna Kiwala,Huiming Xia,Beatriz M. Carreno,Gavin P. Dunn,Antoni Ribas,Obi L. Griffith,Malachi Griffith
出处
期刊:Cancer genetics [Elsevier BV]
卷期号:268-269: 35-35
标识
DOI:10.1016/j.cancergen.2022.10.114
摘要

Neoantigens are tumor-specific peptides presented on the cell surface by MHC that can be recognized by the adaptive immune system. Personalized immunotherapies, such as cancer vaccines, rely on neoantigen prediction to identify sequences that can activate T cells to recognize and destroy the tumor. The majority of cancer vaccine trials have utilized neoantigens derived from missense mutations and small insertions and deletions. However, other mutation types contribute to the overall neoantigen landscape, including aberrantly spliced transcripts arising from cis-acting regulatory mutations. In this study, we explore the potential immunogenicity of alternative splicing events and present pVACsplice, a tool to expand the capability of pVACtools, a suite of tools for neoantigen prediction (http://www.pvactools.org). pVACsplice assembles alternative transcripts from tumor-specific splicing patterns, identifies sequence changes by comparison to a reference, and predicts neoantigens from the novel peptide sequences. Matched whole exome sequencing and RNA sequencing datasets from glioblastoma, melanoma, and colorectal cancer cohorts will be analyzed with pVACsplice to obtain binding affinity estimates. We will compare these results to neoantigen predictions from other mutation sources and across cancer types to discover the prevalence of immunogenic splicing events. Finally, we will perform immunogenicity testing with a set of high quality candidates to validate our predictions. We hope to increase the number of candidates for personalized vaccines by adding this functionality to our standard neoantigen prediction workflow. This tool could help generate a more accurate portrait of the neoantigen landscape in tumors, and in turn, enhance responses to personalized immunotherapies. Neoantigens are tumor-specific peptides presented on the cell surface by MHC that can be recognized by the adaptive immune system. Personalized immunotherapies, such as cancer vaccines, rely on neoantigen prediction to identify sequences that can activate T cells to recognize and destroy the tumor. The majority of cancer vaccine trials have utilized neoantigens derived from missense mutations and small insertions and deletions. However, other mutation types contribute to the overall neoantigen landscape, including aberrantly spliced transcripts arising from cis-acting regulatory mutations. In this study, we explore the potential immunogenicity of alternative splicing events and present pVACsplice, a tool to expand the capability of pVACtools, a suite of tools for neoantigen prediction (http://www.pvactools.org). pVACsplice assembles alternative transcripts from tumor-specific splicing patterns, identifies sequence changes by comparison to a reference, and predicts neoantigens from the novel peptide sequences. Matched whole exome sequencing and RNA sequencing datasets from glioblastoma, melanoma, and colorectal cancer cohorts will be analyzed with pVACsplice to obtain binding affinity estimates. We will compare these results to neoantigen predictions from other mutation sources and across cancer types to discover the prevalence of immunogenic splicing events. Finally, we will perform immunogenicity testing with a set of high quality candidates to validate our predictions. We hope to increase the number of candidates for personalized vaccines by adding this functionality to our standard neoantigen prediction workflow. This tool could help generate a more accurate portrait of the neoantigen landscape in tumors, and in turn, enhance responses to personalized immunotherapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YC发布了新的文献求助10
刚刚
刚刚
1秒前
HH完成签到,获得积分10
2秒前
3秒前
3秒前
不能当饭吃完成签到,获得积分10
4秒前
5秒前
可爱的函函应助12采纳,获得10
5秒前
搜集达人应助ring采纳,获得10
7秒前
AA发布了新的文献求助10
8秒前
8秒前
fanfan应助budingman采纳,获得20
10秒前
天行马发布了新的文献求助10
10秒前
HCN发布了新的文献求助10
10秒前
dxy应助budingman采纳,获得20
10秒前
dxy应助budingman采纳,获得20
10秒前
fanfan应助budingman采纳,获得20
10秒前
Akim应助budingman采纳,获得20
10秒前
HalfGumps完成签到,获得积分10
11秒前
hank完成签到,获得积分10
11秒前
11秒前
ZhaoCun完成签到,获得积分10
12秒前
ZD完成签到 ,获得积分10
12秒前
happylion完成签到,获得积分10
12秒前
二猫完成签到,获得积分10
14秒前
饱满的曼梅完成签到,获得积分10
14秒前
15秒前
pK发布了新的文献求助10
15秒前
舒心靖琪完成签到 ,获得积分10
15秒前
zl发布了新的文献求助30
16秒前
乐观小之应助coconut采纳,获得10
16秒前
17秒前
19秒前
年年发布了新的文献求助10
20秒前
莎akkk发布了新的文献求助10
20秒前
width完成签到,获得积分10
20秒前
ohh发布了新的文献求助10
21秒前
着急的雪冥完成签到,获得积分10
22秒前
今天进步了吗完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3922738
求助须知:如何正确求助?哪些是违规求助? 3467659
关于积分的说明 10949073
捐赠科研通 3196734
什么是DOI,文献DOI怎么找? 1766253
邀请新用户注册赠送积分活动 856148
科研通“疑难数据库(出版商)”最低求助积分说明 795275