Fundus Photograph-Derived Computational Features Predict Risk of Cardiovascular Events in the Chronic Renal Insufficiency Cohort Clinical Observational Study

医学 观察研究 眼底(子宫) 队列 慢性肾功能不全 队列研究 慢性肾功能衰竭 内科学 心脏病学 眼科 肾功能
作者
Rohan Dhamdhere,Gourav Modanwal,Pushkar Mutha,Sebastian Medina,Sruthi Arepalli,Mahboob Rahman,Sadeer Al‐Kindi,Anant Madabhushi
出处
期刊:Kidney360 [American Society of Nephrology (ASN)]
标识
DOI:10.34067/kid.0000000955
摘要

Patients with CKD face an elevated but variable risk of cardiovascular (CV) disease. Retinal imaging in CKD provides a non-invasive opportunity for CV risk stratification through microvascular analysis. The objective of this study was to evaluate retinal vascular features extracted via computer vision and machine learning approaches for CV risk and their added value over established risk calculators in CKD patients. Retinal scans from 1333 participants of the multi-center clinical observational study, Chronic Renal Insufficiency Cohort (NCT00304148), were analyzed. A deep-learning pipeline segmented vessels and then identified arterioles and venules from them. Segmented vessel, arteriole and venule masks were used to extract 384 vascular features. An elastic-net model-Cardiovascular Assessment through Retinal Evaluation in CKD (CARE-CKD)(MCARE)- was trained, using the top eight features, on 567 participants (101 major adverse cardiovascular events [MACE]: composite of myocardial infarction, stroke, heart failure) and validated on 244 participants (44 MACE). A Nomogram integrating MCARE with clinical markers (age, sex, blood pressure, smoking, eGFR, albuminuria, cholesterol, BMI and diabetes status) was developed. MCARE demonstrated strong prognostic performance for predicting MACE, (C-index=0.70, HR=3.95, above vs. below median; 95%CI: 2.36-6.63; p<0.001), outperforming the Framingham Risk Score (FRS) (C-index=0.66; HR=1.06) (Likelihood Ratio Test (LRT) p<0.01) and Predicting Risk of cardiovascular disease EVENTs (PREVENT) (C-index=0.65; HR=1.84, LRT p<0.001) calculators. MCARE improved risk stratification within FRS-based high-risk (HR=3.73, p<0.001) and PREVENT-based high-risk (HR=4.73, p<0.001) categories. Nomogram enhanced risk stratification (C-index=0.77, HR=3.81, p<0.0001) compared to clinical markers (LRT p<0.01). CARE-CKD provides a novel, opportunistic approach to CV risk assessment in CKD, outperforming the established risk calculators and refining stratification within high-risk categories. By enabling earlier identification, close monitoring, and targeted management of high-risk patients, CARE-CKD addresses gaps left by traditional calculators, maximizing the benefits of emerging therapies and potentially improving long-term outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
夯大力完成签到,获得积分10
1秒前
MMTI完成签到,获得积分10
2秒前
dididi完成签到,获得积分10
2秒前
指哪打哪完成签到,获得积分10
3秒前
萧然完成签到,获得积分10
4秒前
54189415完成签到,获得积分20
5秒前
结实的凉面完成签到,获得积分10
5秒前
CS发布了新的文献求助10
6秒前
54189415发布了新的文献求助10
7秒前
7秒前
zhuling完成签到,获得积分10
9秒前
9秒前
黄黄完成签到,获得积分10
10秒前
qqqq完成签到,获得积分10
11秒前
菲菲完成签到 ,获得积分10
11秒前
cding完成签到,获得积分10
12秒前
勤奋乐天完成签到,获得积分10
12秒前
maxthon完成签到,获得积分10
13秒前
nieinei完成签到 ,获得积分10
14秒前
15秒前
细腻的柚子完成签到,获得积分10
15秒前
gugu完成签到,获得积分10
16秒前
dingding完成签到 ,获得积分10
17秒前
852应助茉莉猫哟采纳,获得10
18秒前
XueXiTong完成签到,获得积分10
18秒前
19秒前
zybbb完成签到 ,获得积分10
19秒前
机智的三国菌完成签到,获得积分10
19秒前
材料人完成签到 ,获得积分10
20秒前
小李老博发布了新的文献求助10
21秒前
Danny发布了新的文献求助10
22秒前
回忆完成签到,获得积分10
22秒前
无脸男完成签到,获得积分10
24秒前
24秒前
24秒前
王燕峰完成签到,获得积分10
24秒前
桐桐应助超级的听南采纳,获得10
25秒前
浮黎元始天尊完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600096
求助须知:如何正确求助?哪些是违规求助? 4685826
关于积分的说明 14839777
捐赠科研通 4674981
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505659
关于科研通互助平台的介绍 1471124