材料科学
合金
电解
电解水
限制
膜
化学工程
质子
电化学
纳米技术
无机化学
冶金
物理化学
电极
机械工程
化学
物理
量子力学
生物
电解质
工程类
遗传学
作者
Shaoxiong Li,Liming Deng,Sung‐Fu Hung,Sheng Zhao,Luqi Wang,Yixin Hao,Yongde Long,Boyuan Li,Yung‐Hsi Hsu,Yiyu Chen,Ying Zhang,Tsung‐Yi Chen,Feng Hu,Linlin Li,Yuxiang Hu,Yuping Wu,Shiling Peng
标识
DOI:10.1002/adma.202507340
摘要
Abstract Designing acid‐stable anodic electrocatalysts with low noble‐metal loading is essential for the industrial‐scale application of proton exchange membrane water electrolysis (PEMWE). However, existing catalyst systems struggle to fully utilize the intrinsic properties of active sites. Here, a precisely engineered nanocatalyst is unveiled through a hierarchical atomic assembly strategy for synthesis, featuring an ultralow‐content Ir─Ru single‐atom alloy integrated into robust titanium dioxide nanowires (Ir 1 Ru/TiO 2 ). This lattice‐embedded structure induces the support to reduce the dissolution and excessive oxidation of Ru/Ir sites through strong interfacial coupling, significantly enhancing the corrosion resistance of catalysts. Moreover, atomically dispersed Ir induces the formation of uniquely shortened Ru─O ligand bonds, serving as stable self‐limiting motifs, in contrast to the conventional formation of amorphous oxide layers. The Ir 1 Ru/TiO 2 catalyst showcases an initial mass activity of 1971.5 A , enabling stable operation at 10 mA cm −2 for over 3200 h and at the rated current density of 2 A cm −2 for 2000 h in PEMWE.
科研通智能强力驱动
Strongly Powered by AbleSci AI