In-Situ Gas Observation in Thermal-Driven Degradation of LiFePO<sub>4</sub> Battery

原位 降级(电信) 电池(电) 材料科学 热的 化学 物理 计算机科学 气象学 电信 热力学 有机化学 功率(物理)
作者
Yue Zhang,Anqi Teng,Zheng Fang,Wenxin Mei,Lihua Jiang,Jinhua Sun,Qingsong Wang
标识
DOI:10.59717/j.xinn-energy.2025.100107
摘要

<p>Lithium-ion batteries are gaining prominence as energy storage needs evolve to meet modern performance and sustainability demands. Lithium iron phosphate batteries, despite their high thermal stability, face safety risks from flammable gas emissions during thermal runaway. Determining the pathways of gas evolution reactions is essential for understanding the thermal runaway mechanism. This study systematically investigates characteristic gas generation pathways through in situ analysis coupled with structural characterization of the LiFePO<sub>4</sub> cathode, proposing six key gas generation reactions involved in the thermal degradation of LiFePO<sub>4</sub> batteries. The internal reaction mechanisms are inherently dependent on environmental conditions, and the product distribution is essentially a probabilistic process. The in-situ analysis shows that ethylene and carbon dioxide are the primary gases produced during thermal runaway, mainly resulting from chemical reactions involving electrolyte decomposition. Diethyl carbonate undergoes concurrent evaporation and thermal degradation, while ethylene carbonate preferentially reacts with active electrode materials. Although cathode structural transformations occur during heating, no direct oxygen evolution was detected in our experimental conditions. The primary thermal runaway drivers are identified as anode-electrolyte reactions that synergistically release heat and gases during 200-300°C. Furthermore, correlation analysis was performed to investigate the source of hydrogen, indicating that a significant amount of hydrogen in cell-level tests was generated by reactions involving metallic lithium and trace water in the reductive environment. These insights advance both fundamental understanding of battery degradation chemistry and practical design of next-generation LiFePO<sub>4</sub> pack systems with intrinsic thermal safety.</p>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
john完成签到,获得积分10
1秒前
王叮叮完成签到,获得积分10
1秒前
任性的蝴蝶完成签到,获得积分10
1秒前
狄百招完成签到,获得积分10
1秒前
浅色墨水完成签到,获得积分10
2秒前
迷路沛春完成签到,获得积分10
2秒前
倷倷完成签到 ,获得积分10
2秒前
Adian完成签到,获得积分10
2秒前
西子阳发布了新的文献求助10
3秒前
科研通AI5应助蓝的斯凯采纳,获得30
3秒前
面汤发布了新的文献求助30
4秒前
北斋完成签到,获得积分10
4秒前
wendy.lv完成签到,获得积分10
4秒前
ledong完成签到,获得积分10
4秒前
zzzzz完成签到,获得积分10
5秒前
5秒前
小黑完成签到,获得积分10
6秒前
6秒前
melody完成签到,获得积分10
6秒前
00712345_01完成签到,获得积分10
7秒前
7秒前
晓倩完成签到,获得积分10
7秒前
未完成完成签到,获得积分10
7秒前
戴胜完成签到,获得积分10
8秒前
敬老院N号完成签到,获得积分0
8秒前
Mr_龙在天涯完成签到,获得积分10
8秒前
8秒前
9秒前
爱听歌的糖豆完成签到,获得积分0
9秒前
荒年完成签到,获得积分10
9秒前
Sept完成签到,获得积分10
10秒前
10秒前
10秒前
目光所致发布了新的文献求助10
11秒前
浮游应助可耐的雁凡采纳,获得10
11秒前
Aaaasaki完成签到,获得积分10
11秒前
Chiuchiu完成签到,获得积分10
11秒前
Maxvail完成签到,获得积分20
12秒前
平淡的秋寒关注了科研通微信公众号
12秒前
花花花花完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067327
求助须知:如何正确求助?哪些是违规求助? 4289104
关于积分的说明 13362097
捐赠科研通 4108613
什么是DOI,文献DOI怎么找? 2249798
邀请新用户注册赠送积分活动 1255239
关于科研通互助平台的介绍 1187762