Regression-Based Hyperparameter Learning for Support Vector Machines

超参数 人工智能 支持向量机 机器学习 超参数优化 计算机科学 回归 边距(机器学习) 数学 统计
作者
Shili Peng,Wenwu Wang,Yinli Chen,Xueling Zhong,Qinghua Hu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:9
标识
DOI:10.1109/tnnls.2023.3321685
摘要

Unification of classification and regression is a major challenge in machine learning and has attracted increasing attentions from researchers.In this paper, we present a new idea for this challenge, where we convert the classification problem to a regression problem, and then use the methods in regression to solve the problem in classification.To this end, we leverage the widely used maximum margin classification algorithm, and its typical representative, Support Vector Machine (SVM).More specifically, we convert SVM into a piecewise linear regression task, and propose a regression-based SVM (RBSVM) hyperparameter learning algorithm, where regression methods are used to solve several key problems in classification, such as learning of hyperparameters, calculation of prediction probabilities, and measurement of model uncertainty.To analyze the uncertainty of the model, we propose a new concept of model entropy, where the leave-one-out prediction probability of each sample is converted into entropy, and then used to quantify the uncertainty of the model.The model entropy is different from the classification margin, in the sense that it considers the distribution of all samples, not just the support vectors.Therefore, it can assess the uncertainty of the model more accurately than the classification margin.In the case of the same classification margin, the farther the sample distribution is from the classification hyperplane, the lower the model entropy.Experiments show that our algorithm (RBSVM) provides higher prediction accuracy and lower model uncertainty, as compared with state of the art algorithms, such as Bayesian hyperparameter search and gradient-based hyperparameter learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
二月发布了新的文献求助10
刚刚
2秒前
柏代桃发布了新的文献求助10
3秒前
Sisyphus应助于是采纳,获得10
6秒前
superp完成签到,获得积分10
6秒前
7秒前
123669完成签到,获得积分10
7秒前
李健的小迷弟应助二月采纳,获得10
8秒前
charm完成签到,获得积分10
9秒前
鳗鱼焦完成签到 ,获得积分10
10秒前
永不言弃的彪子完成签到,获得积分10
11秒前
watermanlo完成签到,获得积分20
11秒前
柏代桃完成签到,获得积分10
12秒前
joyux完成签到,获得积分10
12秒前
13秒前
13秒前
丹丹发布了新的文献求助10
14秒前
GGbone完成签到,获得积分10
15秒前
15秒前
呼呼哈哈完成签到,获得积分10
16秒前
PTF完成签到,获得积分10
19秒前
zjh发布了新的文献求助10
19秒前
20秒前
ca发布了新的文献求助10
20秒前
21秒前
23秒前
23秒前
ztt1221完成签到,获得积分10
25秒前
爆米花应助科研通管家采纳,获得10
26秒前
脑洞疼应助科研通管家采纳,获得10
26秒前
ludong_0应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
小马甲应助科研通管家采纳,获得10
26秒前
26秒前
CipherSage应助科研通管家采纳,获得10
26秒前
小蘑菇应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902495
求助须知:如何正确求助?哪些是违规求助? 3447282
关于积分的说明 10848050
捐赠科研通 3172537
什么是DOI,文献DOI怎么找? 1752911
邀请新用户注册赠送积分活动 847463
科研通“疑难数据库(出版商)”最低求助积分说明 789979